
ibm.com/redbooks

Developing Web
Services Using CICS,
WMQ, and WMB

Chris Rayns
David Carey

Andrew Gardner
Jenny Nott

Adrian Simcock

Bottom-up application design and
re-use of traditional code

Exposing applications as Web
services

Modern tooling
techniques

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Developing Web Services Using CICS, WMQ, and
WMB

September 2007

International Technical Support Organization

SG24-7425-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (September 2007)
This edition applies to Version 3, Release 1, CICS Transaction Server.

Note: Before using this information and the product it supports, read the information in
“Notices” on page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this Redbooks publication . ix
Become a published author . x
Comments welcome. xi

Chapter 1. Introduction . 1
1.1 Why we wrote this book . 2
1.2 Why use CICS Web services . 3
1.3 Application Development in CICS TS3.1. 6

1.3.1 Access to CICS . 6
1.3.2 Application transformation. 7

1.4 WebSphere Message Broker and WMQ . 7
1.4.1 WebSphere MQ (WMQ) . 8
1.4.2 WebSphere Message Broker (WMB) . 8

1.5 The Change of Address application . 8

Chapter 2. Service-oriented architecture and CICS 11
2.1 An introduction to SOA . 12
2.2 Basic components of an SOA solution . 13
2.3 Web services. 14

2.3.1 Properties of a Web service . 14
2.3.2 Web service standards . 15
2.3.3 WS standards in CICS TS. 18
2.3.4 Implementing Web services . 20

2.4 Implementing SOA on z/OS . 21
2.5 Realizing that CICS assets can be SOA solutions 21
2.6 Access to COMMAREA programs . 23

2.6.1 Access to terminal-oriented programs . 24
2.7 Channels and containers. 25

2.7.1 Advantages over COMMAREAs . 26
2.7.2 Channels . 26
2.7.3 Containers. 30
2.7.4 Data conversion . 32
2.7.5 Migrating COMMAREA to channels and containers 33

2.8 Web services support in CICS TS V3.1 . 35
2.8.1 Web services assistant utility . 35
© Copyright IBM Corp. 2007. All rights reserved. iii

2.8.2 Deploying CICS applications. 36
2.8.3 PIPELINE for message handling. 36
2.8.4 Message handlers for SOAP. 37
2.8.5 Web services resource definitions . 37

Chapter 3. CICS as a service provider and requester 39
3.1 Overview of CICS as a service provider . 40
3.2 Inbound request processing . 41
3.3 Overview of CICS as a service requester . 42
3.4 Processing the outbound service request . 43

3.4.1 Local optimization . 44
3.5 CICS resources for Web services . 46

3.5.1 URIMAP . 46
3.5.2 PIPELINE . 48
3.5.3 WEBSERVICE . 52
3.5.4 TCPIPSERVICE . 54
3.5.5 Resources checklist . 54

Chapter 4. Modern Web services development tools 57
4.1 Web services assistant in CICS TS 3.1. 58

4.1.1 Web services assistant utility programs . 59
4.2 WebSphere Developer for System z . 61

4.2.1 Introducing WebSphere Developer for System z 62
4.2.2 The Eclipse platform . 62
4.2.3 The WebSphere Developer for System z Workbench 64
4.2.4 z/OS application development tools in WD/z 67
4.2.5 Web services development scenarios. 68
4.2.6 Enterprise Service Tools . 69
4.2.7 Web Services Enablement wizard . 70

Chapter 5. Development of the Change of Address CICS application . . . 73
5.1 Breakdown of the CICS application. 74

5.1.1 Overview of the approach to CICS application development 74
5.1.2 Separation of presentation, business, and data logic 76
5.1.3 Overview of the application . 78
5.1.4 Database schema . 78
5.1.5 Application schema . 80
5.1.6 Application functions . 81

5.2 Developing the presentation logic using the BMS Editor in WD/z. 92
5.2.1 Create a Project . 92
5.2.2 Create a new map set . 93
5.2.3 Designing the BMS map . 95
5.2.4 Creating additional maps . 99

5.3 Creating the BMS map set JCL. 102
iv Developing Web Services Using CICS, WMQ, and WMB

5.3.1 Establish a connection to the host . 103
5.3.2 Filtering and data set mapping tasks . 104
5.3.3 Create a z/OS Project for the map set . 109
5.3.4 Import map sets into the z/OS Project . 111
5.3.5 Create the JCL for the map set . 112
5.3.6 Submit the JCL and test in CICS . 113

Chapter 6. Exposing our application as a Web service 115
6.1 Configuration for Web service enablement . 116

6.1.1 Creating the HFS directories. 116
6.1.2 Creating the CICS Resources. 117
6.1.3 Generating the WSBind and WSDL files. 119
6.1.4 Installing the PIPELINE resource definitions. 121
6.1.5 Performing a scan on the PIPELINE. 122
6.1.6 Verifying the HFS structure just created . 122

6.2 Using WD/z to generate WSDL. 123
6.2.1 Importing the COBOL copy book . 124
6.2.2 Running the Web Services for CICS wizard 124
6.2.3 Creating the CICS resources . 130

6.3 Testing the Web service . 130

Chapter 7. Configuring publication/subscription. 159
7.1 Introduction to WebSphere Message Broker . 160

7.1.1 Capabilities of WebSphere Message Broker 160
7.1.2 Components of WebSphere Message Broker. 162

7.2 Establishing the pub/sub environment . 165
7.3 Creating the Hash Notification Message Set. 170
7.4 Creating the Publication Message Flow . 175
7.5 Testing the Publication Notification Message Flow 178
7.6 Porting the Publication Notification Message Flow to System z Broker . 178

Chapter 8. Developing Web service clients . 181
8.1 Using VB Script . 182

8.1.1 VBScript Retrieve Address Query. 182
8.1.2 VBScript code overview . 183
8.1.3 VBScript Corporate Acknowledgement Query 188

8.2 Generating a Java Client using WAS . 190
8.3 A client developed in WebSphere Message Broker 196

8.3.1 Creating the RetrieveAddressWeb Message Flow 196

Chapter 9. Tracing the Change of Address scenario 213
9.1 Collecting the traces . 214

9.1.1 Tracing the Web service on CICS. 214
9.1.2 Tracing the Message Broker flow on distributed platforms 216
 Contents v

9.1.3 Tracing the Message Broker flow on System z. 217
9.2 The annotated trace of the scenario . 219

9.2.1 The trace through CICS . 220
9.2.2 Tracing the Broker on System z . 227
9.2.3 Tracing the Broker on Windows . 229
9.2.4 Tracing the CICS Web service . 233
9.2.5 Return to the Client Broker on Windows . 243

Appendix A. Additional material . 249
Locating the Web material . 249
Using the Web material . 250

How to use the Web material . 250

Related publications . 261
IBM Redbooks Publications . 261
Other publications . 261
Online resources . 261
How to get IBM Redbooks . 262
Help from IBM . 262

Index . 263
vi Developing Web Services Using CICS, WMQ, and WMB

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2007. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
C/370™
CICS®
CICSPlex®
DB2®
IBM®
IMS™

Language Environment®
MQSeries®
MVS™
Rational®
Redbooks®
Redbooks (logo) ®
REXX™

SupportPac™
System z™
TXSeries®
WebSphere®
z/OS®
zSeries®

The following terms are trademarks of other companies:

Enterprise JavaBeans, EJB, Java, JavaBeans, J2EE, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Visual Basic, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii Developing Web Services Using CICS, WMQ, and WMB

Preface

This IBM® Redbooks® publication provides a practical demonstration of how to
develop applications that take advantage of CICS® Web services facilities. This
book can be viewed as a follow-on from the IBM Redbooks publication
Application Development for CICS Web Services, SG24-7126-00, with the
addition of using modern tooling techniques. Because we are creating a new
application, we follow the bottom-up approach described in Application
Development for CICS Web Services, SG24-7126-00. Although not a
requirement, we highly recommend that you review that publication for a much
deeper discussion of CICS Web services development topics and alternative
approaches.

The primary purpose of this book is to demonstrate that well structured CICS
Web services are easy to develop using the CICS Web services assistant. We
also take a look at modern tooling such as WebSphere® Developer for zSeries®
(WD/z), which the traditional mainframe developer may not have seen before. As
traditional developers we found the Eclipse-based interface to the mainframe a
new and exciting way to both interact and use facilities on the mainframe.

In the Redbooks publication Application Development for CICS Web Services,
SG24-7126-00 we showed how to expose a CICS application, namely the CICS
Catalog Manager sample application. We now take this process one step further
by developing a CICS application from the ground up that will be CICS Web
Services enabled. We initially develop this application that runs in CICS using
standard BMS (3270) panels as an initial front-end. As the application and
display logic are separate, we are well placed to use the business functions as
CICS Web Services creating the WSDL interface using the CICS Web services
assistant.

The team that wrote this Redbooks publication
This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Poughkeepsie Center.

David Carey is a Senior IT Advisory Specialist with the IBM Support Center in
Sydney, Australia, where he provides defect and non-defect support for CICS,
CICSPlex/SM, the WebSphere MQ family of products, and z/OS®. David has
worked in the IT industry for 27 years and has written extensively about CICS
and zOS Diagnostic procedures for the ITSO.
© Copyright IBM Corp. 2007. All rights reserved. ix

Andrew Gardner is an IT Availability Specialist with the IBM Support Centre in
Canberra Australia, where he provides specialist support in the WMQ, Message
Broker and related WBI products. Andrew holds a science degree from the
University of Sydney in Computer Science and Pure Mathematics. He has
worked for over 20 years in the IT industry, primarily on mainframe systems,
specializing in CICS and WMQ.

Jenny Nott is an IT Availability Specialist with the IBM Support Centre in
Sydney, Australia, where she provides defect and non-defect support for CICS,
CICSPlex® SM, MQSeries®, and TXSeries®. Jennifer has 16 years of
experience in Information Technology, and holds an honors degree in Applied
Science from the University of NSW, majoring in Physical Geography.

Adrian Simcock is a Software Engineer working at the IBM Australian
Programming Centre in Perth, Australia. He has 20 years of experience working
with CICS and related products for a variety of IBM internal and external
customer accounts. He is currently working as a developer for IBM Fault
Analyzer. He holds a degree in Electrical and Electronic Engineering from
Plymouth University.

Thanks to the following people for their contributions to this project:

Bob Haimowitz,
Rich Conway
International Technical Support Organization, Poughkeepsie Center

Lyn Elkins
IBM US

and others who kindly reviewed this IBM Redbooks publication and offered
excellent comments.

Become a published author
Join us for a two-to-six week residency program! Help write an IBM Redbooks
publication dealing with specific products or solutions, while getting hands-on
experience with leading-edge technologies. You will have the opportunity to team
with IBM technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs and
increase your productivity and marketability.
x Developing Web Services Using CICS, WMQ, and WMB

Find out more about the residency program, browse the residency index, and
apply online at the following Web site:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xii Developing Web Services Using CICS, WMQ, and WMB

Chapter 1. Introduction

In this chapter we discuss the reasons why a large CICS site would consider
using CICS Web Services as an interface to their heritage application systems.
We also give a brief overview of CICS Web Services and introduce the
application we develop in this book.

1

© Copyright IBM Corp. 2007. All rights reserved. 1

1.1 Why we wrote this book

This book is intended to be of most use to the CICS Application Developer /
Architect who needs to see a practical demonstration of how to develop
applications that take advantage of CICS Web services facilities. This book can
be viewed as a follow-on from the IBM Redbooks publication Application
Development for CICS Web Services, SG24-7126-00, with the addition of using
modern tooling techniques. Because we are creating a new application, we
follow the bottom-up approach described in Application Development for CICS
Web Services, SG24-7126-00. Although not a requirement, we highly
recommend that you review that publication for a much deeper discussion of
CICS Web services development topics and alternative approaches.

The primary purpose of this book is to demonstrate that well structured CICS
Web Services are easy to develop using the CICS Web services assistant. We
also take a look at modern tooling such as WebSphere Developer for zSeries
(WD/z) which the traditional mainframe developer may not have seen before. As
traditional developers we found the Eclipse-based interface to the mainframe a
new and exciting way to both interact and use facilities on the mainframe.

In the Redbooks publication Application Development for CICS Web Services,
SG24-7126-00 we showed how to expose a CICS application, namely the CICS
Catalog Manager sample application. We now take this process one step further
by developing a CICS application from the ground up that will be CICS Web
Services enabled. We initially develop this application that runs in CICS using
standard BMS (3270) panels as an initial front-end. As the application and
display logic are separate, we are well placed to use the business functions as
CICS Web Services creating the WSDL interface using the CICS Web services
assistant.

The application we develop is a simple but new concept. It uses the publish /
subscribe functionality of WebSphere Message Broker (WMB) and therefore
WMQ as a backbone. External subscribers, on receipt of a notification will invoke
a sequence of CICS Web Services. This application is described in 1.5, “The
Change of Address application” on page 8 and the technical implementation
details are fully described in Chapter 5, “Development of the Change of Address
CICS application” on page 73.

Above all else, we want to demonstrate that creating Web services from new and
existing CICS applications using the CICS Web services assistant is easy and
worthwhile.

Of course, one of the chief concerns when exposing CICS functions as Web
services is security. This is a topic that is covered at length in another Redbooks
publication Securing Access to CICS Within an SOA, SG24-5756-01.
2 Developing Web Services Using CICS, WMQ, and WMB

1.2 Why use CICS Web services

A great many large commercial institutions, particularly in the financial sector
have been using CICS Transaction Server for decades now. The reasons are
many: robustness, performance, scalability, security, and so forth. The basic
transaction processing heart of CICS is still the same at the API interface, but
under the covers, many new features and performance improvements are
introduced. The choice to use these new features is left entirely as a business
decision.

IBM introduced support for a number of new interfaces for technologies that did
not exist when CICS was developed. The CICS Web Interface with TCP/IP
support is one such interface. More recently, support for CICS Web services has
become formally available with CICS TS V3.1. This is a very significant
development for heritage CICS sites as it potentially puts their CICS applications
on an equal footing with the most recently developed and distributed Web
applications. This is because Web Services are a standard,
platform-independent method of invoking a remote function. The caller has no
need to know the implementation details of the target service.

However new facilities in CICS are not always keenly embraced by these
long-term CICS users. The basic CICS functionality remains the same. Indeed
there are many applications, typically CICS COBOL, that have been running
largely unchanged for 20 years or more. As time moves on and applications
support skills move on, there is understandable apprehension to change working
code to employ new functionality unless there are significant justifications to do
so. With Web Services, there is ample justification to take the plunge and if the
application is well designed, minimal changes are required to the heritage base
code.

The following sections summarize the reasons that a long term CICS site should
seriously consider adapting a large, working CICS application to enable CICS
Web Services.

Competitive advantage
By having parts of existing corporate applications available outside the internal
company intranet, clients and suppliers are enabled for electronic commerce.
This is certainly not a new concept, but EDI solutions have always required
intermediate bridging software to transform and route requests and responses.
Such software was usually proprietary and required at both ends of the
connection as well as being expensive for smaller sites.
 Chapter 1. Introduction 3

Using a standard interface
By using the Web services approach, a standard interface is published enabling
clients and suppliers to develop their Web service clients in their own time, using
their own tooling, independently of the target software or platform. The quicker
and easier it is for clients and suppliers to connect to the corporate Web service,
the more likely they will use the Web service.

Cost advantage
There are still a great many heritage applications running on mainframes notably
using CICS (3270, Client-Server, Web, Bridge, and so on). The cost and scale of
redevelopment of these systems is overwhelming to many organizations.
Enabling these established systems for Web services is highly desirable for
these sites.

Employing a service oriented approach does not necessarily mean a huge outlay
for new hardware and software. Indeed the aim of this book is to demonstrate
how new and existing CICS applications can be adapted as Web services
without major outlays. CICS provides utilities that enable existing CICS
applications to be adapted as Web services. At the simplest level, this is all that
is required to enable a CICS program to become a Web service. In practice
however, issues such as complex data types and security must be taken into
consideration.

Centralized infrastructure
Keeping the Web services infrastructure on the mainframe has a number of
important features that will appeal to sites with a long and rich association with
CICS. From those sites, issues such as centralized security, backup, and
administration are fundamentally important to their business requirements.

Typically business resumption strategies are in place, tested, and they have no
desire to change these for the sake of a few application niceties. None of these
key features need be affected by employing CICS Web services.

A modern approach to e-commerce
From the view of many businesses, it is highly desirable to use modern
application development approaches. This not only allows them to take
advantage of new technologies but can relieve their mainframe of some the
development processing burden. It is also important as these businesses need to
be able to attract quality graduate programming staff. Potential new recruits will
be much more interested working for a business that uses modern techniques as
they frequently view roles, such as application maintenance, (rightly or wrongly),
as being minimal-interest jobs.
4 Developing Web Services Using CICS, WMQ, and WMB

Long term staff also need to keep their skills up-to-date. They will not fall behind
as a result of the modern mainframe infrastructure. Indeed the interconnection of
heritage and new technology can be a very interesting challenge.

Corporate image
The use of new technology is also very much part of a corporate image.
Companies who are slow to react to IT trends can be viewed as being slow off
the mark. This may or may not be correct, but perception is important. At the
most superficial level, use of CICS Web Services can provide a modern
make-over to heritage application functions for limited investment.

Timely response to business needs
There is an increasing desire to be positioned for quick response to business
needs. By using standard, secure, and well accepted interfaces, requirements
such as EDI, or even business integrations (see below) become significantly
easier. This can be done using applications infrastructure such as messaging,
but there are many, possible incompatible messaging systems available. While
this might be practical within an organization, cross organizational messaging
can become a problem. Web services are transport independent. The most
widely used invocation method for Web services is SOAP over HTTP, but it is
just as valid to use SOAP over WebSphere MQ links or JMS.

Corporate acquisition driven integration
Just about every corporation undergoes acquisitions or restructuring at some
point these days. This usually has significant implications for the IT infrastructure
of both organizations. By using a standard CICS Web Services interface, the
pain of integrating such systems can be reduced. The difficulty of such
integrations can never be entirely removed, which is why there is a whole
industry dedicated to software integration platforms.

Software such as WMQ, WBI Adapters, and WebSphere Message Broker are
significant parts of the IBM software integration portfolio. However, with some
forethought, employing standard interfaces such as CICS Web Services,
transitions between corporate states becomes much more manageable.

Desire to retain mainframe infrastructure
The benefits of centralized security, databases, and general administration are
clear to long-term mainframe users. Some corporations have long histories
(decades) with IBM mainframes. Financial and government institutions typically
fall into this category, as well as those organizations where very high levels of
security have always been required, such as defence or R&D. For these types of
organizations, the benefits of centralized mainframe security are well
established. By introducing CICS Web Services, centralized security can be
 Chapter 1. Introduction 5

retained on the mainframe. Web services allow for the inclusion of security
information for authentication and authorization purposes.

1.3 Application Development in CICS TS3.1

As previously mentioned, the full support of CICS Web services was realized in
CICS TS V3.1. In this section, we list and briefly discuss the functional
enhancements that are relevant to Web services. This information is of most
interest to the application programmer to help them forge their way into new
technologies with advanced capabilities and support for modern programming
techniques.

1. Access to CICS

– Web services support

– Enhanced HTTP support

– Improved SSL support

– Support for mixed case passwords

– Improved user ID checks for the START API command

2. Application transformation

– Enhanced C/C++ support

– Enhanced Open Transaction Environment

– Language Environment® MAIN support for Assembler

– Enhanced inter-program data transfer

– Threadsafe Web API commands

– 64 bit addressing toleration

– Code page conversion enhancements

– Information Centre on an Eclipse based platform

While all of these enhancements are covered in extensive detail in the CICS TS
3.1 Release Guide, those of most interest to this book are described in further
detail.

1.3.1 Access to CICS

CICS TS V3.1 includes a range of new and improved capabilities that enhance
access to CICS. Standard interface and communication protocols mean that you
have the facilities to exploit new technologies and re-use your CICS applications
within a flexible operating environment. The potential benefits of this were
6 Developing Web Services Using CICS, WMQ, and WMB

discussed in section 1.2, “Why use CICS Web services” on page 3 and includes
simplified development processes, reduced development costs, and reduced
time to deployment.

CICS TS V3.1 delivers major new support for Web services, which is an
evolution of the functions previously provided as the SOAP for CICS optional
feature. These enhancements allow CICS-based applications to be exposed as
Web services, thus enabling existing applications to be integrated within a
service-oriented architecture (SOA). Chapter 2 develops the discussion
regarding the SOA terminologies and how these relate to CICS TS and Web
services.

There is also support for the WS-Atomic Transaction specification enabling
distributed transaction coordination for participating partners complying with this
standard. A message-level security function that complies with the WS-security
specification was been provided in CICS TS V3.1. Although there is no
demonstration of this feature in this publication, there is more information about
this in Chapter 2, “Service-oriented architecture and CICS” on page 11 for
reference.

1.3.2 Application transformation

This second group of enhancements allow existing applications to be further
developed and new applications to be constructed using contemporary
programming languages, constructs, and tools. Support is introduced for totally
Language Environment enabled Assembler application programs. All the EXEC
CICS Web API commands were made threadsafe, and there is a more efficient
use of z/OS multiprocessor capabilities through enabling of the Open
Transaction Environment (OTE) support to use open TCBs.

One of the significant enhancements for the application developer is the new
mechanism for inter-program data transfer, using constructs called channels and
containers. These provide an alternative to COMMAREAs and are not subject to
the same 32 KB size restriction. This is discussed further in 2.7, “Channels and
containers” on page 25.

1.4 WebSphere Message Broker and WMQ

We use some other significant software components in this project. In this
section we briefly describe these components.
 Chapter 1. Introduction 7

1.4.1 WebSphere MQ (WMQ)

WebSphere MQ (WMQ or MQ) is data transportation middleware, and has
become the messaging standard for most business sectors. It assures once only
delivery of messages (data records) on 30+ operating systems, using a
consistent API for a wide range of supported programming languages. The
language support ranges from z/OS Assembler to .NET to JMS. WMQ is
available on z/OS and 30+ distributed platforms. On most distributed platforms
there are two offerings—a freely downloadable client and a server (queue
manager). WMQ is an asynchronous transport model, though many applications
use it in a synchronous fashion.

WMQ supports the most popular network communication protocols, with the vast
majority of message traffic flowing across TCP/IP networks. It also provides a
simple codepage data translation, most useful when the messages are in
printable character format.

WMQ supports two messaging styles, persistent and non-persistent. Persistent
messages are recoverable, from logs, in the event of a queue manager outage
(planned or unplanned). Non-persistent messages are not logged and are not
usually recovered in the event of a queue manager outage. Non-persistent
messages are faster and less expensive than persistent, but they are not
assured.

The WebSphere Message Broker (WMB), which we discuss in the next section,
is based on WMQ.

1.4.2 WebSphere Message Broker (WMB)

WMB provides a number of significant functions on top of WMQ. Message data
can be mapped to known structures, modified, augmented, enriched, and
distributed. WMB provides a development toolkit that allows visual development
of message flows and data structures. Although WMB uses WMQ as a
foundation, it is not limited to using WMQ as a transport mechanism. A
comprehensive range of protocols are supported.

1.5 The Change of Address application

The application we shall develop to demonstrate the use of CICS Web services
is quite simple, yet has a number of features that makes it ideally suited as a
CICS Web service application. This application introduces the idea of a
centralized repository of names and addresses, to be kept, ideally by a nation’s
postal service. It keeps no personal data other than names and addresses. The
8 Developing Web Services Using CICS, WMQ, and WMB

purpose of this application is to notify subscribers when a person or business
changes address. Subscribers would be banks, utility companies, government
agencies and so on, that is, anyone who needs to know. Subscription control is
left with the postal service. Address change notifications are driven by the person
changing address, the relocatee, either by personally notifying the postal service
or possibly via a Web interface, which is not included as part of this project. Of
course adequate identification and proof of address are required.

The sample application safely assumes all subscriber organizations maintain a
database of their clients. We provide a Web service called GetHash that returns
a hash value for a given address. The organization should add a column to their
customer database table to include the hash value. The generated hash value
depends on a standard format of address. We provide a Web service called
StandardAddress that takes an address and returns the address in a standard
format. This allows for correct comparison of address hash-values.

When an address is updated in the postal service system a notification is
generated and distributed via the publication/subscription function of WebSphere
Message Broker. Only those corporations subscribing to the service will receive
such notifications via their WMQ clients. These notifications are very small, just a
hash of the old address for the relocatee. The corporation must check to see if
they have a match for this hash code in their client database. If they do, they
invoke a CICS Web service called RetrieveAddress that effectively asks if the
address change was for their client. The CICS Web services will either reply yes
and also provide the new address or no. It is then up to the corporation to update
their database. The CICS RetrieveAddress Web service will cut an audit record
to indicate that a particular corporation requested the new address and
presumably updated their database.

This last point is important for privacy legislation reasons in many countries. The
postal service may have to produce a report listing those organizations to which
it has provided this information. We created a Web service called CorpAck that
allows the listing of corporations that acknowledged the change of address. This
is also important to the relocatee, as they otherwise have no visibility of who has
or has not been notified.

We chose to implement this system in CICS because the address database is
potentially a very large database or possibly even a VSAM file. There is also a
possibility that many postal services may already have databases with this
information. We need high performance from our CICS Web services to make
the facility attractive to use. On any given day potentially hundreds or even
thousands of relocations may be recorded.
 Chapter 1. Introduction 9

10 Developing Web Services Using CICS, WMQ, and WMB

Chapter 2. Service-oriented
architecture and CICS

This chapter introduces service-oriented architecture (SOA) and how it relates to
CICS Transaction Server on IBM z/OS platform. Following this, we outline the
Web Services technologies, Web services support in CICS, and how you can
transform existing CICS assets to play a role in the SOA solutions.

2

© Copyright IBM Corp. 2007. All rights reserved. 11

2.1 An introduction to SOA

There is an increasing demand for technologies to support the connecting or
sharing of resources and data in a flexible and standardized way, which
becomes a challenge when there are different implementations of this
technology both across and within company boundaries. A service-oriented
approach not only standardizes this approach, but also allows for greater
flexibility in the process. The trend is the desire for companies to easily provide
services, share data, and use services from other businesses.

With an SOA solution, your programs can be on different systems and be
provided by different vendors, and yet communicate and exchange data with
each other. By deploying Web services, valuable CICS applications can evolve
to participate in new, more flexible business models.

SOA is an evolution of best practices and technologies, combining the
developments made in internet-based technology and inter-operability
standards. This results, among other things, a more user-friendly environment for
application development and integration of existing business IT assets into a
distributed intra and inter-company solution.

This integrated architecture approach is based on the concept of services and
allows business logic to be separated from application logic. While it is not a
formal specification in itself, imagine a distributed solution that provides
application functions across both internal business units and corporations. These
functions are delivered as services that may include business logic, application
logic, or a combination of both. The result is that flexible systems can be built that
implement the changing business processes quickly by making use of reusable
components.

The definition of SOA can be further summarized as follows:

� A set of business-aligned IT services that support an organization’s business
goal and objectives.

� A set of architectural principles that address characteristics such as
modularity, loose coupling, and separation of functions.

� An architectural style that requires a service provider, a service consumer,
and a service description.

� A set of services that can be combined and choreographed.

� A programming model that comes with standards, tools, methods, and
technologies, such as Web Services.
12 Developing Web Services Using CICS, WMQ, and WMB

2.2 Basic components of an SOA solution
At the most basic level, an SOA solution consists of the following three
components and is shown in Figure 2-1.

� Service provider - creates a service and publishes its interface and access
information to the service registry.

� Service requester - a client invocation that requires the service by binding to
the service provider and invoking an action on the service exposed by the
provider.

� Service registry - also known as a service broker, makes the service
interface and implementation access the information that is available to the
service requesters.

Figure 2-1 SOA components and operations

Now we can define a service as being a function that can be offered or provided
to a requester. The scope of this can be a single business function or part of a
collection of business functions that are wired together to form a process.

Other, crucial aspects to a service that must be considered when developing an
SOA solution are the following commonly agreed-on aspects:

� Services should encapsulate a reusable business function

� Services are defined by explicit, implementation-independent interfaces

� Services are invoked through communication protocols that use location
transparency and interoperability

Service
Registry

Service
Requester

Service
Provider

Invoke

Discover Publish2 1

3

Request/Response
 Chapter 2. Service-oriented architecture and CICS 13

An example of a reusable service that is accessible by more that one requesting
application is one that offers a calculation such as a quote for a car part stock
order. This could be requested by many different programs or clients from both
within the enterprise and from third parties. The reusability of the service in this
case will be correct as long as the interfaces of the component that offers the
service are clearly defined.

For more information about the relationship between Web services and service
-oriented architectures, refer to the IBM Redbooks publication Patterns:
Service-Oriented Architecture and Web Services, SG24-6303.

2.3 Web services
Web services are self-contained, modular applications that can be described,
published, located, and invoked over a network.

Web services are becoming the standard for basic SOA implementation by
taking advantage of existing open-standard Web technologies such as XML,
URL, and HTTP. These comprise a set of standards that facilitate open
system-to-system communication. By adhering to Web services, applications
that are based on different platforms and technologies can cooperate through
well defined interfaces. Web services follow the SOA philosophy of loose
coupling between service requesters and providers.

The formal definition of a Web service, provided by the World Wide Web
consortium (W3C) Services Architecture Working Group is as follows:

“A web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems interact with
the Web services in a manner prescribed by it’s description using SOAP
messages, typically conveyed using HTTP with and XML serialization in
conjunction with other Web-related standards.”

2.3.1 Properties of a Web service
While this is widely documented, it can be summarized that all Web services
share the following properties:

� Web services are self contained. On the client side, no additional software
is required. A programming language with XML and HTTP client support is a
minimum requirement. On the server side, an HTTP server and a SOAP
server are required.
14 Developing Web Services Using CICS, WMQ, and WMB

� Web services are self-describing. A Web Service Description Language
(WSDL) file provides all the information needed to implement a Web service
as a provider, or to invoke a Web service as a requester.

� Web services can be published, located, and invoked across the Web.
Existing infrastructure by way of established lightweight internet standards
such as HTTP are used.

� Web services are modular. Simple Web services can combined to form
more complex implementations, shortening development time.

� Web services are language-independent and interoperable. The client
and server can be implemented in different environments and operating
system platforms. Any language can be used to implement Web service
clients and servers.

� Web services are inherently open and standards-based. XML and HTTP
are the major technical foundation. A large part of the Web service technology
was built using open source methodology, maintaining vendor independence.

� Web services are loosely coupled. A service requester has to know the
interface to a Web service, but not the details of how it was implemented.

� Web services provide the ability to wrap existing applications. This is
done by providing a Web service as an interface to the application.

2.3.2 Web service standards

Web services standards and specifications change rapidly to keep up with
emerging technologies. Figure 2-2 on page 16 provides a summary of the
standards today.

Then, within each standard there are a number of specifications that we will
outline. Section 2.3.3, “WS standards in CICS TS” on page 18 discusses the
specifications of interest to our book and introduces terminology relevant to
transforming or developing CICS assets to incorporate this technology.
 Chapter 2. Service-oriented architecture and CICS 15

Given the pace at which the standards are evolving, there is an online
compilation of Web services standards at the following Web site:

http://www-128.ibm.com/developerworks/webservices/standards

Figure 2-2 Core standards of Web services

Figure 2-2 outlines the eight standards of Web service, which we discuss further
in the following list.

1. Business processes

A business process specifies the potential execution order of operations from
a collection of Web services, the data shared between these Web services,
which partners are involved, and how they are involved in the business
process. It also includes joint exception handling for collections of Web
services and other issues involving how multiple services and organizations
participate. BPEL (Business Process Execution Language) specifies
business processes and how they relate to Web services.

2. Management

Web services manageability is defined as a set of capabilities for discovering
the existence, availability, health, performance, usage, as well as the control
and configuration of a Web service within the Web services architecture. As
Web services become pervasive and critical to business operations, the task
of managing and implementing them is imperative to the success of business
operations.

3. Reliability

It is not possible to solve business issues if the participants are unable to be
sure of the completion of message exchanges. Reliable messaging, which
allows messages to be delivered reliably between distributed applications in
16 Developing Web Services Using CICS, WMQ, and WMB

http://www-128.ibm.com/developerworks/webservices/standards

the presence of software component, system, or network failures, is therefore
critical to Web services.

4. Transactions

Transactions are a fundamental concept in building reliable distributed
applications. A Web service environment requires coordination behavior
provided by a traditional transaction mechanism to control the operations and
outcome of an application.

The specifications include the following:

• Web services atomic transactions

• Web services business activity

• Web services co-ordination

5. Security

There are a number of specifications that applications can engage in secure
communication that are designed to work with the general Web services
framework. Following are some of these specifications:

• Web services Federation Languages

• Web services Trust

• Web services Security policy

• Web services Secure Conversation Language

6. Description and discovery

Web services are meaningful only if potential users may find information
sufficient to permit their execution. The focus of these specifications and
standards is the definition of a set of services supporting the description and
discovery of businesses, organizations, and other Web services providers,
the Web services they make available, and the technical interfaces which
may be used to access those services.

Amongst others, some of these specifications are discussed in a following
section and pertain to the CICS implementation of Web services:

• UDDI

• WSDL

7. Messaging

These messaging standards and specifications are intended to give a
framework for exchanging information in a decentralized, distributed
environment. CICS TS provides support for the SOAP specification, which we
explore in later chapters.
 Chapter 2. Service-oriented architecture and CICS 17

8. Transports

BEEP, the Blocks Extensible Exchange Protocol (formerly referred to as
BXXP), is a framework for building application protocols. It was standardized
by IETF and does for Internet protocols what XML does for data.

2.3.3 WS standards in CICS TS

Certainly CICS TS adheres to many of the specifications outlined in the previous
section, and the following are of particular interest to the development of Web
services in CICS:

� Description and Discovery - in particular UDDI and WSDL.

� WS-Transactions - the family of specifications that relate to transactional Web
services.

� WS-Security - the family of specifications that relate to securing Web
services.

� Messaging - the SOAP for CICS feature and incorporation of SOAP message
handlers.

Following is additional terminology that describes some key specifications that
are useful within the scope of this publication:

XML
Extensible Markup Language or XML is the foundation of Web services.
However, since much information is already written about XML, we do not
describe it here. The following document provides a good reference about
this standard:

http://www.w3.org/XML/

SOAP
SOAP provides an XML, text-based platform and language neutral message
format. Originally proposed by Microsoft®, SOAP was designed to be a
simple and extensible specification for the exchange of structured XML-based
information in a decentralized, distributed environment. As such, it represents
the main means of communication between the three functional components
in an SOA: the service provider, the service requester, and the service
registry.

There are currently two versions of SOAP: Version 1.1 and Version 1.2.

The SOAP specification consists of the following three parts:

i. An envelope that defines a framework for describing message content
and processing instructions. Each SOAP message consists of an
18 Developing Web Services Using CICS, WMQ, and WMB

http://www.w3.org/XML/

envelope that contains a number of headers and one body that carries
the payload, or data, to exchange. SOAP messages may also contain
faults that report failures or unexpected conditions.

ii. A set of encoding rules for expressing instances of
application-defined data types.

iii. A convention for representing remote procedure calls and responses.

A SOAP message is, in principle, independent of the transport protocol that is
used: HTTP, JMS, SMTP, or FTP. The most common way of exchanging
SOAP messages is through HTTP.

WSDL
Web services Description Language (WSDL) uses XML to specify the
characteristics of a Web service, what the Web service can do, where it
resides, and how it is invoked. WSDL can be extended to allow descriptions
of different bindings, regardless of what message formats or network
protocols are used to communicate.

WSDL enables a service provider to specify the following characteristics of a
Web service:

• The name of the Web service and addressing information.

• The protocol and encoding style to be used when accessing the
public operations of the Web service.

• The Type information: operations, parameters, and data types
comprising the interface of the Web service, including a name for this
interface.

WSDL is not bound to any protocol or network service. It can be extended to
support many different message formats and network protocols. However,
because Web services are mainly implemented using SOAP and HTTP, the
corresponding bindings are part of this standard.

UDDI
The Universal Description, Discovery, and Integration standard defines a
means to publish and to discover Web services. The current release is UDDI
Version 3.0. For more information, refer to the following Web sites:

http://www.uddi.org/
http://www.oasis-open.org/specs/index.php#wsssv1.0

Further details on these standards reside in the IBM Redbooks publication,
Implementing CICS Web Services, SG24-7206.
 Chapter 2. Service-oriented architecture and CICS 19

http://www.uddi.org/
http://www.oasis-open.org/specs/index.php#wsssv1.0

2.3.4 Implementing Web services
Figure 2-3 shows the model implemented by Web services.

Figure 2-3 Web services invocation model

Following is a description of the interaction in Figure 2-3:

1. The service provider publishes the Web Services Description Language
(WSDL) data that defines its interface and location to a service registry such
as the Universal Description, Discovery, and Integration (UDDI) service
registry.

2. The service requester contacts the service registry to obtain reference to a
service provider.

3. The service requester, having obtained the location of the service provider,
makes calls on the provider by sending a SOAP-formatted message.

Web service Usage Models
Basic Web services support provides the following three simple usage models:

� One-way usage scenario - a Web services message is sent from a
requester to a provider, and no response message is expected.

� Synchronous request or response usage scenario - a message is sent
from a requester to a provider and a response message is expected.

� Basic callback usage scenario - a message is sent from a requester to a
provider using the 2-way invocation model, but the response is treated only as
an acknowledgement of a request having been received. The provider then
responds by using a Web service callback to the requester.

Service
Registry

Service
Requester

Service
Provider

Invoke the Web service by
sending a SOAP message

Discover a service in the
service registry and retrieve
its WSDL

Publish WSDL from the service
provider to the service registry, using
UDDI

2 1

3

Request/Response
20 Developing Web Services Using CICS, WMQ, and WMB

Other Web service standards are built upon these basic standards and
invocation models to provide higher level functions and qualities of service.

We will show later on how our sample application fits within this framework.

2.4 Implementing SOA on z/OS
SOA provides an increasing number of options for accessing existing assets on
z/OS. In a sense, the mainframe environment has always lent itself to the
concept of SOA because it regards all it’s resources as providing services.
Resources specifically designed for SOA capabilities are such components as
the Enterprise Service Bus (ESB), process management engines (WPS), base
Java™ 2 Enterprise Edition (J2EE™), WebSphere Application Server, and
databases.

To offer the power of System z™ for SOA, IBM has developed specific z/OS
versions of its SOA product suite that is built on IBM WebSphere Application
Server V6 for z/OS. The WebSphere Process Server and WebSphere Enterprise
Service Bus are z/OS-enabled, as are supporting components such as IBM
DB2® for z/OS V8. This offers a clean and contained architecture within a z/OS
environment with the architecture based on open and interoperability standards.

CICS Transaction Server for z/OS V3.1 has added features to support SOA
technologies such as Web Services and can integrate with the WebSphere
Application Server for z/OS-based products. We will demonstrate in Chapter 6 of
this book how CICS can be used as a service provider within the SOA framework
and the interaction with the various products and components within a larger,
distributed environment.

2.5 Realizing that CICS assets can be SOA solutions
Part of the hesitation in using new technology to transform existing assets in the
form of heritage applications into an SOA solution is the seemingly complex
relationship between all the components involved or even in knowing what
components need to be invoked.

The scenario we are using in this publication is by no means the only solution;
instead, it provides one way of using some of the technology to achieve a robust
SOA implementation. More of this is discussed in the chapters that follow, but
there is first a need for the application programmer to recognize the types of
CICS assets that can be transformed.
 Chapter 2. Service-oriented architecture and CICS 21

CICS programs are typically grouped into application suites or components for
performing a common set of business actions. Identifying the CICS programs
that provide flexible public interfaces and understanding these interfaces is the
first key step for re-use.

Over the past 36 years, developers have created three major types of CICS
applications or assets:

1. CICS COMMAREA programs

These programs receive requests and send responses through an area of
storage called the COMMunications AREA (COMMAREA). The programs
themselves can be written in COBOL, PL/I, C, C++, Assembler, or Java.
These programs are akin to subroutines as they are unaware of how they
were invoked. Their state, transactional scope, and security context are
managed by CICS itself.

2. CICS terminal-oriented programs

These programs are sometimes referred to as 3270 programs because they
were designed to be invoked directly from an IBM 3270 Display Station or
similar buffered terminal device. Invocation usually corresponds to a single
interaction in a user dialog, starting with the receipt of a message from the
terminal and ending with the transmission of a reply message to the same
device.

Input data from the terminal device is carried in a datastream, which the
application acquires through a RECEIVE command. After processing, an
output datastream is transmitted back to the terminal device through a SEND
command.

Terminal-oriented programs must be capable of analyzing device-specific
input data streams and building the output data streams that are to be
transmitted to the terminal.

With the introduction of basic mapping support (BMS), the programmer only
needed to be concerned with the static layout of the panel to be displayed.
Device-specific information and terminal datastreaming was handled by BMS,
thus enabling applications to be more device independent.

3. CICS programs that use channels and containers

Channels and containers are new resources in CICS TS V3.1 that provide the
capability to pass data from one application to another application.

� A channel is a logical resource that must contain one or more containers.

� A container is a named block of data designed for passing information
between programs.
22 Developing Web Services Using CICS, WMQ, and WMB

The major advantage of using channels and containers compared to using a
COMMAREA is that the length of a container can exceed the 32 KB limit for
COMMAREA data. CICS uses channels and containers to pass data between
the message handlers of a pipeline. This is discussed further in section 2.7,
“Channels and containers” on page 25.

2.6 Access to COMMAREA programs

The best practice in CICS application design for a number of years now has been
to separate key elements of the application into the following sub-categories:

– Client adapt or presentation logic

– Integration logic

– Business logic

– Data access logic

Figure 2-4 shows a transaction made up of these separate components. A
COMMAREA or ‘channel’ interface is used to pass data between the
components.

Figure 2-4 The key application elements

This separation provides a framework that enables the following:

� Reuse of business logic and data access logic programs as sub-routines
within a larger application

� Reuse with alternative implementations of presentation logic—for example a
Web Service, a Web browser, or a 3270 device

CICS COMMEARA programs can be relatively easily enabled for access from a
variety of different client applications running on a wide variety of

3270
Presentation

Integration
logic

Business
logic

Data
access

Transaction

Client

P I B D

CICS Transaction Server
 Chapter 2. Service-oriented architecture and CICS 23

platforms—distributed servers and mainframes. Typical clients include the
following:

� Web service requester

� Java servlet or Enterprise JavaBeans™ (EJB™) running on a J2EE
application server

� An application running on a Microsoft .NET environment

� Web browser

� Messaging Middleware - WebSphere MQ

In most cases, connections from a client will use a combination of the following:

• Internal adapters

• External connectors

• Standard IP-based protocols

An internal adapter is simply a program that accepts a request and converts the
data from an external format to the internal format used by the CICS business
logic. CICS Web Support introduced this concept with the converter program
DFHWBTTA. Using a more recent technology, an adapter can convert a SOAP
message to a COMMAREA format. The transport mechanism used to invoke the
adapter may be synchronous or asynchronous.

An external connector provides a remote call interface and implements a
private protocol to invoke an application running under CICS TS. An external
adapter converts data from its external form to the COMMAREA format. CICS
Transaction Gateway is the most well known example of an external connector
that implements the Common Connector Interface specified by the J2EE
Connector Architecture (JCA).

The standard IP-based adapters that use a specific transport are IBM
WebSphere MQ, HTTP, and TCP/IP sockets. These methods permit greater
flexibility in the functionality that can be implemented. We decided to use IBM
WebSphere MQ to demonstrate access to traditional CICS programs from an
external client.

2.6.1 Access to terminal-oriented programs
There are many programs that do not have such a clear separation of logic as
COMMAREA programs, for which there is only a 3270 interface. CICS TS3.1
provides a LINK3270 bridge function that simulates a client actually interfacing
directly with a 3270 screen. This is achieved by the client making a connection to
the Link3270 bridge in CICS TS (program DFHL3270) and then passing a
COMMAREA that includes a transaction identifier and the data that needs to be
24 Developing Web Services Using CICS, WMQ, and WMB

passed to the application. The response then contains the 3270 screen data
reply, and the information is presented back to the client.

We do not discuss the development and implementation of terminal-oriented
programs any further in this book.

2.7 Channels and containers

Essentially the use of channels and containers provides a solution to the 32KB
limit imposed on the traditional CICS COMMAREA in order to accommodate
modern applications. There is now a need for considering how you currently
handle data exchange and whether implementing this new function will benefit
your application design needs.

Consider some of the COMMAREA issues you may face when handling large
data objects:

� Applications must use a circumvention technique, such as using external
VSAM files or splitting the data into separate parts. This method increases
risk as well as programming time and effort.

� Passing XML documents by value throughout the request process path
becomes inhibited because the size constraint applies to the following:

• Calls between CICS programs both within the local system and
between CICS systems

• Parameter data passed between CICS tasks

• External client programming interfaces such as CICS interface (EXCI
and the CICS client external call interface (ECI)

� Data structures used to define a COMMAREA payload can become
overloaded. Redefining structures on the same area of memory increases the
risk of program errors. Similarly, confusion about the validity of fields can
result in application programming errors.

� An overloaded COMMAREA structure increases transmission time between
CICS regions because the structure size must account for the maximum size
of the data that could be returned from the called program—and this
parameter size depends on the request logic invoked.

CICS TS must always allocate memory to accommodate the return of the
maximum COMMAREA structure size.

� A code-page conversion of COMMAREA structure is complex because binary
and character data cannot be easily separated.
 Chapter 2. Service-oriented architecture and CICS 25

2.7.1 Advantages over COMMAREAs

The containers and channels approach has several advantages over
COMMAREAs:

� Containers can be any size and, as a result, can extend beyond the maximum
32KB size of a COMMAREA. There is no limit to the number of containers
that can be added to a channel, and the size of the individual containers is
limited only by the amount of storage available.

� A channel consists of multiple containers, enabling it to be used to pass data
in a more structured way. In contrast, a COMMAREA is a single block of data.

� Unlike COMMAREAs, channels do not require the programs that use them to
know the exact size of data returned, making programming easier.

2.7.2 Channels
A channel is a uniquely named reference to a collection of application parameter
data held in containers. Its analogous to a COMMAREA but is not subject to the
constraints of a COMMAREA.

You can choose a channel name that is a meaningful representation of the data
structures that the channel is associated with. For example in a human resource
application a channel name might be <employee-info>.

This collection of application parameter data serves as a standard mechanism to
exchange data between CICS programs.

CICS TS provides an EXEC API that associates a named channel with a
collection of one or more containers—offering an easy way to group parameter
data structures to pass to a called application.

CICS TS removes a channel when it can no longer be referenced—when it
becomes out of scope.

The current channel
A program's current channel is the channel (if any) with which it was invoked.
The current channel is set by the calling program or transaction by transferring
the control to the called program via a LINK, XCTL, START, and
pseudo-conversational RETURN with the channel parameter.

Although the program can create other channels, the current channel, for a
particular invocation of a particular program, never changes. It is analogous to a
parameter list.
26 Developing Web Services Using CICS, WMQ, and WMB

If a channel is not explicitly specified, the current channel is used as the default
value for the CHANNEL (channel-name) parameter on the EXEC CICS
command. This is shown in Figure 2-5.

Figure 2-5 The current channel

Typically, programs that exchange a channel are written to handle that channel.
That is, both client and server programs know the name of the channel and the
names and number of the containers in that channel. However, if, for example, a
server program or component is written to handle more than one channel, on
invocation it must discover which of the possible channels it was passed.

A program can discover its current channel—that is, the channel with which it
was invoked—by issuing an EXEC CICS ASSIGN CHANNEL command. (If there is no
current channel, the command returns blanks.)

The program can also retrieve the names of the containers in its current channel
by browsing, but typically, this is not necessary. A program written to handle
several channels is often coded to be aware of the names and number of the
containers in each possible channel.

To get the names of the containers in the current channel, use the browse
commands as shown in Example 2-1 on page 28.

Current Channel: none

Current Channel: EMPLOYEE-INFO

Current Channel: EMPLOYEE-INFO

Current Channel: none

Current Channel: MANAGER-INFO

Program A

Program B

Program C

EXEC CICS LINK PROGRAM('PROGRAMB')
 CHANNEL('EMPLOYEE-INFO')

EXEC CICS LINK PROGRAM('PROGRAMC')
 CHANNEL('EMPLOYEE-INFO')

EXEC CICS LINK PROGRAM('PROGRAMD')

Program D

Program E

EXEC CICS LINK PROGRAM('PROGRAME')
 CHANNEL('MANAGER-INFO')

EXEC CICS RETURN
 Chapter 2. Service-oriented architecture and CICS 27

Example 2-1 Browsing containers in a channel

EXEC CICS STARTBROWSE CONTAINER BROWSETOKEN(data-area)
EXEC CICS GETNEXT CONTAINER(data-area) BROWSETOKEN(token)
EXEC CICS ENDBROWSE CONTAINER BROWSETOKEN(token)

Having retrieved the name of its current channel and, if necessary, the names of
the containers in the channel, a server program can adjust its processing to suit
the kind of data that it was passed.

The scope of a channel
The scope of a channel is the code (for example, the program or programs) from
which it can be accessed.

Figure 2-6 on page 29 shows the scope of channel EMPLOYEE-INFO, which
consists of programs A (the program which created it), program B (for which it is
the current channel), and program C (for which it is also the current channel).
Additionally, we show the scope of channel MANAGER-INFO, which consists of
programs D (which created it) and Program E (for which it is the current channel).

Note: For a program creating a channel, the ASSIGN CHANNEL command will
return blanks unless it was invoked via START, LINK, or XCTL specifying the
channel name.
28 Developing Web Services Using CICS, WMQ, and WMB

Figure 2-6 Example showing the scope of a channel

Lifetime of a channel
A channel is created when it is named on an EXEC CICS command. The usual
command to create a channel is the EXEC CICS PUT CONTAINER command, in
which specifying the CHANNEL parameter creates the channel and also
associates the container with it.

A channel is deleted when it goes out of scope to the programs in the linkage
stack, meaning that no programs can access it. This will cause the channel to be
deleted by CICS.

Figure 2-7 on page 30 shows the APIs used to create and manage a channel.

Program A

Program B

Program C

EXEC CICS LINK PROGRAM('PROGRAMB')
 CHANNEL('EMPLOYEE-INFO')

EXEC CICS LINK PROGRAM('PROGRAMC')
 CHANNEL('EMPLOYEE-INFO')

EXEC CICS LINK PROGRAM('PROGRAMD')

Scope of Channel EMPLOYEE_INFO

Program D

Program E

EXEC CICS LINK PROGRAM('PROGRAME')
 CHANNEL('MANAGER-INFO')

EXEC CICS RETURN

Scope of Channel MANAGER_INFO

Current Channel: none

Current Channel: EMPLOYEE-INFO

Current Channel: EMPLOYEE-INFO

Current Channel: none

Current Channel: MANAGER-INFO
 Chapter 2. Service-oriented architecture and CICS 29

Figure 2-7 API to create and manage a channel

2.7.3 Containers
A container is a uniquely named block of data that can be passed to a
subsequent program or transaction. It refers to a particular parameter data
structure that exists within a collection of virtually any form of application
parameter data.

You can choose a container name that is a meaningful representation of the data
structure. For example, in a human resource application, the container name
might be <employee-name>.

CICS TS provides EXEC API verbs to create, delete, reference, access, and
manipulate a container as well as to associate it with a channel. See Figure 2-8
on page 31 below for more details.

� EXEC CICS PUT CONTAINER CHANNEL
Creates a channel and places data into a container within the channel
� EXEC CICS GET CONTAINER CHANNEL
Retrieves the container data passed to the called program
� EXEC CICS MOVE CONTAINER CHANNEL AS TOCHANNEL
Moves a container from one channel to another channel
� EXEC CICS DELETE CONTAINER CHANNEL
Deletes a container
� EXEC CICS ASSIGN CHANNEL
Returns the name of the program’s current channel, if one exists
� EXEC CICS LINK PROGRAM CHANNEL
Links to the program, on a local or remote system, passing the channel and
container data
� EXEC CICS XCTL PROGRAM CHANNEL
Transfers control to the program passing the channel and container data
� EXEC CICS START TRANSID CHANNEL
Starts a task, on a local or remote system, copying the named channel and
container data and passing it to the started task
� EXEC CICS RETURN TRANSID CHANNEL
Returns control to CICS, passing the channel and container data to the next
transaction
30 Developing Web Services Using CICS, WMQ, and WMB

Figure 2-8 Container related API

A container can be any length, and a container size is constrained only by the
available user storage in the CICS address space.

It can include data in any format required by an application. An application can
create any number of containers and can use separate containers for different
data types, such as binary and character data. This capability helps ensure that
each container structure is based on a unique area of memory.

It also minimizes the potential for errors that commonly arise when parameter
data for multiple applications is overloaded in a single memory area, by isolating
different data structures, and making the association between data structure and
purpose clear.

CICS read-only containers
CICS can create channels and containers for its own use and pass them to user
programs. In some cases CICS marks these containers as read-only, so that the
user program cannot modify data that CICS needs to return from the user
program.

User programs cannot create read-only containers.

You cannot overwrite, move, or delete a read-only container. Thus, if you specify
a read-only container on a PUT CONTAINER, MOVE CONTAINER, or DELETE CONTAINER
command you will receive an INVREQ condition.

� EXEC CICS PUT CONTAINER CHANNEL
Creates a channel and places data into a container within the channel
� EXEC CICS GET CONTAINER CHANNEL
Retrieves the container data passed to the called program
� EXEC CICS MOVE CONTAINER CHANNEL AS TOCHANNEL
Moves a container from one channel to another channel
� EXEC CICS DELETE CONTAINER CHANNEL
Deletes a container from a channel
� EXEC CICS STARTBROWSE CONTAINER
Start a browse of the containers associated with a channel
� EXEC CICS GETNEXT CONTAINER
Return the name of the next container associated to the channel
� EXEC CICS ENDBROWSE CONTAINER
Ends the browse of the containers associated with the channel

Note: Channel containers are not recoverable. If you need to use recoverable
containers, use CICS business transaction services (BTS) containers.
 Chapter 2. Service-oriented architecture and CICS 31

2.7.4 Data conversion
The data conversion model used by channel applications is much simpler than
the data conversion model used by COMMAREA applications. This is because
data conversion in COMMAREA applications is controlled by the system
programmer, whereas in channel applications it is controlled by the application
programmer using simple API commands.

Here are some cases where data conversion is necessary:

� When character data is passed between platforms that use different encoding
standards—for example, EBCDIC, and ASCII.

� When you want to change the encoding of some character data from one
Coded Character Set Identifier (CCSID) to another.

Applications that use Channels to exchange data use a simple data conversion
model. Frequently, no conversion is required, but when conversion is required, a
single programming instruction can be used to tell CICS to handle it
automatically.

Using COMMAREAs
For applications that use the COMMAREAs to exchange data, the conversion
is done under the control of the system programmer using the DFHCNV
conversion table, the DFHCCNV conversion program, and optionally the
DFHUCNV user-replaceable conversion program.

Using channels
The data conversion model used by channel applications is much simpler
than that used by the COMMAREA applications. The data in channels and
containers is converted under the control of the application programmer using
API commands.

� The application programmer is responsible only for the conversion of user
data—that is, the data in containers created by the application programs.
System data is converted automatically by CICS, where necessary.

� The application programmer is concerned only with the conversion of
character data. The conversion of binary data (between big-endian and
little-endian) is not supported.

� Applications can use the container API as a simple means of converting
character data from one code page to another. Example 2-2 on page 33
converts data from codepage1 to codepage2:
32 Developing Web Services Using CICS, WMQ, and WMB

Example 2-2 API to convert codepage

EXEC CICS PUT CONTAINER(temp) DATATYPE(CHAR)
 FROMCCSID(codepage1) FROM(input-data)
EXEC CICS GET CONTAINER(temp) INTOCCSID(codepage2)
 SET(data-ptr) FLENGTH(data-len)

2.7.5 Migrating COMMAREA to channels and containers

To migrate programs exchanging data via a COMMAREA on a LINK command,
the format of the command must be changed and proper commands must be
added to use channels and containers.

Figure 2-9 shows an example of this.

Figure 2-9 Changes from commarea to channels using LINK

The same applies to programs using the START command with the
COMMAREA. Figure 2-10 on page 34 shows an example of this.

Existing application with COMMAREA

Program A

EXEC CICS PUT CONTAINER(structure-name)
 CHANNEL(channel-name)
 FROM(structure)

EXEC CICS LINK PROGRAM('programb')
 CHANNEL(channel-name)

EXEC CICS GET CONTAINER(structure-name)
 INTO(structure)

Changed application using channels

Program A

EXEC CICS LINK PROGRAM ('program')
COMMAREA (structure)

Program B

EXEC CICS ADDRESS
 COMMAREA (structure-ptr)

Program B

EXEC CICS GET CONTAINER(structure-name)
 INTO(structure)

EXEC CICS PUT CONTAINER(structure-name)
 FROM(structure)

EXEC CICS RETURN
 Chapter 2. Service-oriented architecture and CICS 33

Figure 2-10 Changes from commarea to channels using START

Migration consideration
Following is a list of items you may want to consider when migrating from a
COMMAREA to channels and containers:

� CICS application programs that use traditional COMMAREAS to exchange
data will continue to work as before.

� EXEC CICS LINK and EXEC CICS START commands, which can pass either
COMMAREAs or channels, can be dynamically routed.

� If you employ a user-written dynamic or distributed routing program for
workload management, rather than CICSPlex SM, you must modify your
program to handle the new values that it may be passed in the DYRLEVEL,
DYRTYPE, and DYRVER fields of the DFHDYPDS communications area.

� It is possible to replace a COMMAREA by a channel with a single container.
While this may seem the simplest way to move from COMMAREAs to
channels and containers, it is not good practice to do this.

� Also, be aware that a channel may use more storage than a COMMAREA
designed to pass the same data. Because you are taking the time to change
your application programs to exploit this new function, you should implement
the "best practices" for channels and containers.

� Channels have several advantages over COMMAREAs, and it pays to design
your channels to make the most of these improvements.

Existing application with START data

Changed application using channels

Transaction 1

EXEC CICS START TRANSID('TRN2')
FROM(structure)

Transaction 2

EXEC CICS RETRIEVE
 INTO(structure)

Transaction 1

EXEC CICS PUT CONTAINER(structure-name)
 CHANNEL(channel-name)
 FROM(structure)

EXEC CICS START TRANSID('TRN2')
 CHANNEL(channel-name)

EXEC CICS GET CONTAINER(structure-name)
INTO(structure)

Transaction 2
34 Developing Web Services Using CICS, WMQ, and WMB

� In previous releases, because the size of COMMAREAs is limited to 32K and
channels were not available, some applications used temporary storage
queues (TSQs) to pass more than 32K of data from one program to another.
Typically, this involved multiple writes to and reads from a TSQ. If you migrate
one of these applications to use channels, be aware of the following:

– If the TSQ used by your existing application is in main storage, the storage
requirements of the new, migrated application are likely to be similar to
those of the existing application.

– If the TSQ used by your existing application is in auxiliary storage, the
storage requirements of the migrated application are likely to be greater
than those of the existing application. This is because container data is
held in storage rather than being written to disk.

Additional information can be found in the Redbooks publication CICS
Transaction Server V3R1 Channels and Containers Revealed, SG24-7227.

2.8 Web services support in CICS TS V3.1
In CICS TS 3.1, support was added for Web services, meaning that applications
running in a traditional CICS environment could now participate in a Web
services environment as either service providers, requesters, or both. Years of
investment into application design and implementation are now increasing their
value by being able to participate in new technologies without the need for
re-programming.

This section discusses the support added to CICS to enable a Web service
environment. It is intended as a summary, as there are already IBM Redbooks
publications written entirely on this topic. See the following Redbooks
publications:

� Implementing CICS Web Services, SG24-72061

� Securing Access to CICS Within an SOA, SG24-57561

� Application Development for CICS Web Services, SG24-7126

Some of the Web Services functions in CICS TS 3.1 are now summarized.

2.8.1 Web services assistant utility
This utility contains two programs, DFHWS2LS and DFHLS2WS:

• DFHWS2LS helps you to map an existing WSDL document into a high
level programming language data structure.
 Chapter 2. Service-oriented architecture and CICS 35

• DFHLS2WS helps you to create a new WSDL document from an
existing language structure.

The Web services assistant supports the COBOL, PL/I, C, and C++
programming languages.

2.8.2 Deploying CICS applications

The Web services support allows you to take two different approaches for
deploying CICS applications:

� Using the Web services assistant. This approach helps you to deploy an
application with the least amount of programming effort. For example, if you
want to expose an existing application as a Web service, you can start with a
high-level language data structure, and use DFHLS2WS to generate the Web
services description. Alternatively, if you want to communicate with an
existing Web service, you can start with its Web service description and use
DFHWS2LS to generate the high-level language structure to use in your
program.

Both DFHLS2WS and DFHWS2LS generate a file called the wsbind file.
When the application runs, CICS will use the wsbind file to transform the
application data into a SOAP message on output, and it transforms the SOAP
message to application data on input.

� Write your own code. To have more control over the processing of your
data, you can write your own code to map between your application data and
the message that flows between the service provider and service requester.
For example, if you want to use non-SOAP messages in the Web service
infrastructure, you can write your own code to transform between the
message format and the format used by your application.

2.8.3 PIPELINE for message handling

A new concept in CICS TS 3.1 is the pipeline. A message handler is a program in
which you can perform your own processing of Web service requests and
responses. A pipeline is a set of message handlers that are executed in
sequence.

A pipeline configuration file needs to be created by the CICS systems
programmer to determine which message handlers should be invoked in a
particular pipeline. It is an XML file that describes both the message handler
programs and the SOAP header processing programs that CICS invokes when it
processes the pipeline. The pipeline can be configured as either a service
requester pipeline or service provider pipeline.
36 Developing Web Services Using CICS, WMQ, and WMB

The PIPELINE resource definition is also required, which is used by CICS to
handle the Web service request. It contains the name of the pipeline
configuration and the location of the WSDL and wsbind files.

2.8.4 Message handlers for SOAP

CICS provides SOAP message handler programs to assist in the configuration of
your pipeline as a SOAP node.

– A service requester pipeline is the initial SOAP sender for the request and
the ultimate SOAP receiver for the response.

– A service provider pipeline is the ultimate SOA receiver for the request
and the initial SOAP sender for the response.

The CICS-provided SOAP message handlers can be configured to invoke one or
more user-written SOAP header processing programs and to enforce the
presence of particular headers in the SOAP message.

2.8.5 Web services resource definitions

We already discussed the PIPELINE definition, so the following resource
definitions are all that is needed to configure support for Web services:

– PIPELINE

– URIMAP

– WEBSERVICE

The application programming interface for these definitions follow the traditional
invocations:

– SOAPFAULT ADD | CREATE | DELETE

– INQUIRE WEBSERVICE

– INVOKE WEBSERVICE
 Chapter 2. Service-oriented architecture and CICS 37

38 Developing Web Services Using CICS, WMQ, and WMB

Chapter 3. CICS as a service provider
and requester

Having introduced the concepts of SOA and the role that CICS can play in taking
advantage in this architecture through support of the Web services technology,
we are now going to overview the processing that CICS performs to handle
incoming and outgoing Web service requests. We also explain some of the
resources that CICS uses to implement the requests.

In a later chapter, we describe how we exposed our sample application as a Web
service with CICS as a service provider within this framework.

3

© Copyright IBM Corp. 2007. All rights reserved. 39

3.1 Overview of CICS as a service provider

When CICS is a service provider, essentially CICS resources are made available
or “exposed” to a request from a client connection from within or external to the
enterprise. The request is passed through a CICS pipeline resource to a target
application program. The response from the application is then passed back
through the same pipeline.

An existing COMMAREA-based application can be exposed as a service
provider without any application changes.

Figure 3-1 summarizes the role of CICS as a service provider where the
following operations are performed:

1. Receive the request from the service requester.

2. Examine the request and extract the contents that are relevant to the target
application program through a pipeline.

3. Invoke the application program, passing data extracted from the request.

4. Construct a response (when the application program returns control) using
data returned by the application program.

5. Send a response to the service requester through the same pipeline.

Figure 3-1 CICS as a service provider

CICS TS V3.1

Service

requester
CICS

application program

CICS Web

services
<XML SOAP

message>

COMMAREA

or CONTAINER
40 Developing Web Services Using CICS, WMQ, and WMB

3.2 Inbound request processing

Figure 3-2 shows the processing that occurs when a service requester sends a
SOAP message over HTTP to a service provider application running in a CICS
region.

Figure 3-2 Web service run-time service provider processing

The CICS-supplied sockets listener transaction (CSOL) monitors the port
specified in the TCPIPSERVICE resource definition for incoming HTTP requests.
When the SOAP message arrives, CSOL attaches the transaction specified in
the TRANSACTION attribute of the TCPIPSERVICE definition. This will, by default
be the CICS-supplied Web attach transaction CWXN.

CWXN finds the URI in the HTTP request and then scans the URIMAP resource
definitions for a URIMAP that has its USAGE attribute set to PIPELINE and its PATH
attribute set to the URI found in the HTTP request. If CWXN finds such a
URIMAP, it uses the PIPELINE and WEBSERVICE attributes of the URIMAP
definition to get the name of the PIPELINE and WEBSERVICE definitions, which
it uses to process the incoming request.

pipeline
config

WSBind

WSDL

HFS

CICS TS V3.1

CPIH

Pipeline

data mapping

Business
Logic

handlers
URIMAP

PIPELINE

WEBSERVICE

dynamic
install

dynamic
install

Language
structure

CICS Web services
assistant

handlers

handlers
 Chapter 3. CICS as a service provider and requester 41

CWXN also uses the TRANSACTION attribute of the URIMAP definition to
determine the name of the transaction that it should attach, to process the
pipeline. By default this is the CPIH transaction.

CPIH starts the pipeline processing. It uses the PIPELINE definition to find the
name of the pipeline configuration file and then determines which message
handler programs and SOAP header processing programs to invoke.

A message handler in the pipeline (typically a CICS-supplied SOAP message
handler) removes the SOAP envelope from the inbound request and passes the
SOAP body to the data mapper function.

CICS uses the DFHWS-WEBSERVICE container to pass the name of the
required WEBSERVICE definition to the data mapper. The data mapper uses the
WEBSERVICE definition to locate the main storage control blocks that it needs
to map the inbound service request (XML) to a COMMAREA or a container.

The data mapper links to the target service provider application program,
providing it with input in the form that it expects. The application program is not
aware that it is being executed as a Web service. The program performs its
normal processing and then returns an output COMMAREA or container to the
data mapper.

The output data from the CICS application program cannot just be sent back to
the pipeline code. The data mapper must first convert the output from the
COMMAREA or container format into a SOAP body.

3.3 Overview of CICS as a service requester

When CICS is a service requester, an application program sends a request,
which is passed through a pipeline to a target service provider. The response
from the service provider is returned to the application program through the same
pipeline. In this section we discuss how to prepare for running a CICS application
as a service requester. Then we discuss how CICS processes the outbound
service request.

Figure 3-3 on page 43 shows CICS as a service requester.
42 Developing Web Services Using CICS, WMQ, and WMB

Figure 3-3 CICS as a service requester

When CICS is in the role of service requester, it must perform the following
operations:

1. Build a request using data provided by the application program.

2. Send the request to the service provider.

3. Receive a response from the service provider.

4. Examine the response, and extract the contents that are relevant to the
original application program.

5. Return control to the application program.

3.4 Processing the outbound service request

Figure 3-4 on page 44 shows the processing that occurs when a service
requester running in a CICS TS V3.1 region sends a SOAP message to a service
provider.

Note: Local optimization is possible when a CICS service requester invokes a
CICS service provider application (see section 3.4.1, “Local optimization” on
page 44).

Service

provider
<XML SOAP

message>

CICS TS V3.1

CICS

application program

CICS Web

servicesCOMMAREA

or CONTAINER
 Chapter 3. CICS as a service provider and requester 43

Figure 3-4 Outbound request processing

When the service requester issues the EXEC CICS INVOKE WEBSERVICE command,
CICS uses the information found in the wsbind file that is associated with the
specified WEBSERVICE definition to convert the language structure into an XML
document. CICS then invokes the message handlers specified in the pipeline
configuration file, and they convert the XML document into a SOAP message.

CICS sends the SOAP request message to the remote service provider via either
HTTP or WebSphere MQ.

When the SOAP response message is received, CICS passes it back through
the pipeline. The message handlers extract the SOAP body from the SOAP
envelope, and the data mapping function converts the XML in the SOAP body
into a language structure, which is passed to the application program in container
DFHWS-DATA.

3.4.1 Local optimization

A special “local” optimization is possible when CICS is in the role of both service
requester and service provider. In this case, CICS avoids the overhead of

ServiceService
ProviderProvider

WSBind

WSDL

HFS

SOAP
message

CICS TS V3.1
User Transaction

Business
Logic

PIPELINE

WEBSERVICE

dynamic
install

Language
structure

CICS Web services
assistant

data mapping

Pipeline

handlers

handlers

handlers

pipeline
config
44 Developing Web Services Using CICS, WMQ, and WMB

converting a language structure into an XML document by simply converting the
EXEC CICS INVOKE WEBSERVICE command into an EXEC CICS LINK command.

When an EXEC CICS INVOKE WEBSERVICE command is used to invoke a CICS
service provider application, the provider application name in the Web service
binding file associated with the WEBSERVICE resource is used to enable the
local optimization of the Web service request. If you use this optimization, the
request is optimized to an EXEC CICS LINK command as in Figure 3-5.

Figure 3-5 Invoking a CICS Web service using local optimization

The CICS service requester and service provider applications can be installed in
the same CICS region or different regions. If they are in different regions, then an
MRO or ISC connection must exist, which enables the LINK request to be
shipped to the remote CICS region hosting the service provider application.

Note that this optimization has an effect on the behavior of the EXEC CICS INVOKE
WEBSERVICE command when the Web service is not expected to send a response:

� When the optimization is not in effect, control returns from the EXEC CICS
INVOKE WEBSERVICE command as soon as the request message is sent.

� When the optimization is in effect, control returns from the EXEC CICS INVOKE
WEBSERVICE command only when the target program terminates.

When the Web service is expected to send a response, control returns from the
command when the response is available.

Important: Invoking a CICS Web service using local optimization results in a
significant performance benefit.

Restriction: You can use this optimization only if the service provider
application and the service requester application are deployed with the Web
services assistant.

CICS TS V3.1

CICS

application program

CICS Web

services
<COMMAREA

or CONTAINER>

LINK

CICS TS V3.1

CICS Web

servicesCICS

application program

EXEC CICS INVOKE
WEBSERVICE
 Chapter 3. CICS as a service provider and requester 45

3.5 CICS resources for Web services

We now look in more detail at what CICS resources a systems programmer must
implement in order to enable Web services in a CICS environment.

3.5.1 URIMAP

The URIMAP resource definition defines one of three different Web-related
facilities in CICS. It is the value of the USAGE attribute on a URIMAP definition
that determines which of the three facilities that particular definition controls.

1. Requests from a Web client to CICS as an HTTP server

URIMAP definitions for requests for CICS as an HTTP server have a USAGE
attribute of SERVER. These URIMAP definitions match the URLs of HTTP
requests that CICS expects to receive from a Web client, and they define how
CICS should provide a response to each request. You can use a URIMAP
definition to tell CICS to do the following:

– Provide a static response to the HTTP request, using a document
template or z/OS UNIX® System Services HFS file

– Provide a dynamic response to the HTTP request, using an application
program that issues EXEC CICS WEB application programming interface
commands

– Redirect the request to another server, either temporarily or permanently

For CICS as an HTTP server, URIMAP definitions incorporate most of the
functions that were previously provided by the analyzer program specified on
the TCPIPSERVICE definition. An analyzer program may still be involved if
the processing path is required.

2. Requests to a server from CICS as an HTTP client

URIMAP definitions for requests from CICS as an HTTP client have a USAGE
attribute of CLIENT. These URIMAP definitions specify URLs that are used
when a user application, acting as a Web client, makes a request through
CICS Web support to an HTTP server. Setting up a URIMAP definition for this
purpose means that you can avoid identifying the URL in your application
program.

3. Web service requests

URIMAP definitions for Web service requests have a USAGE attribute of
PIPELINE. These URIMAP definitions associate a URI for an inbound Web
service request—a request by which a client invokes a Web service in
CICS—with a PIPELINE or WEBSERVICE resource that specifies the
processing to be performed.
46 Developing Web Services Using CICS, WMQ, and WMB

You can use a URIMAP with a USAGE attribute of PIPELINE to specify the
following:

– The name of the transaction that CICS uses for running the pipeline alias
transaction (the default is CPIH)

– The user ID under which the pipeline alias transaction runs

Figure 3-6 illustrates the purpose of a URIMAP resource definition for Web
service requests.

Figure 3-6 URIMAP relationships

You can create URIMAP resource definitions in the following ways:

� Use the CEDA transaction.

� Use the DFHCSDUP batch utility.

� Use CICSPlex SM Business Application Services.

� Use the EXEC CICS CREATE URIMAP command.

When you install a PIPELINE resource, or when you issue a PERFORM PIPELINE
SCAN command (using CEMT or the CICS system programming interface), CICS

pipeline
config

WSBind

WSDL

HFS

CICS TS V3.1

CPIH

Pipeline

data mapping

Business
Logic

handlers
URIMAP

PIPELINE

WEBSERVICE

dynamic
install

dynamic
install

Language
structure

CICS Web services
assistant

handlers

handlers
 Chapter 3. CICS as a service provider and requester 47

scans the directory specified in the PIPELINE’s WSDIR attribute (the pickup
directory), and creates URIMAP and WEBSERVICE resources dynamically. For
each Web service binding file in the directory, that is for each file with the wsbind
suffix, CICS installs a WEBSERVICE and a URIMAP if one does not already
exist. Existing resources are replaced if the information in the binding file is
newer than the existing resources.

3.5.2 PIPELINE

A PIPELINE resource definition provides information about the message
handlers that will act on a service request and on the response. The information
about the message handlers is supplied indirectly. The PIPELINE definition
specifies the name of an HFS file, called the pipeline configuration file, which
contains an XML description of the message handlers and their configuration.

The most important attributes of the PIPELINE definition are as follows:

� WSDIR

The WSDIR attribute specifies the name of the Web service binding directory
(also known as the pickup directory). The Web service binding directory
contains Web service binding files that are associated with the PIPELINE,
and that are to be installed automatically by the CICS scanning mechanism.
When the PIPELINE definition is installed, CICS scans the directory and
automatically installs any Web service binding files it finds there.

If you specify a value for the WSDIR attribute, it must refer to a valid HFS
directory to which the CICS region has at least read access. If this is not the
case, any attempt to install the PIPELINE resource will fail.

If you do not specify a value for WSDIR, no automatic scan takes place on
installation of the PIPELINE, and PERFORM PIPELINE SCAN commands will fail.

� SHELF

The SHELF attribute specifies the name of an HFS directory where CICS will
copy information about installed Web services. CICS regions into which the
PIPELINE definition is installed must have full permission to the shelf
directory: read, write, and the ability to create subdirectories.

A single shelf directory may be shared by multiple CICS regions and by
multiple PIPELINE definitions. Within a shelf directory, each CICS region
uses a separate subdirectory to keep its files separate from those of other
CICS regions. Within each region’s directory, each PIPELINE uses a
separate subdirectory.

After a CICS region performs a cold or initial start, it deletes its subdirectories
from the shelf before trying to use the shelf.
48 Developing Web Services Using CICS, WMQ, and WMB

� CONFIGFILE

This attribute specifies the name of the PIPELINE configuration file.

Figure 3-7 illustrates the purpose of the PIPELINE resource definition.

Figure 3-7 The PIPELINE resource relationships

You can create PIPELINE resource definitions in the following ways:

� Use the CEDA transaction

� Use the DFHCSDUP batch utility

� Use CICSPlex SM Business Application Services

� Use the EXEC CICS CREATE PIPELINE command

Pipeline configuration file
When CICS processes a Web service request, it uses a pipeline of one or more
message handlers to handle the request. The configuration of a pipeline used to
handle a Web service request is specified in an XML document, which is known
as a pipeline configuration file. Use a suitable XML editor or text editor to work

pipeline
config

WSBind

WSDL

HFS

CICS TS V3.1

CPIH

Pipeline

data mapping

Business
Logic

handlers

PIPELINE

WEBSERVICE

dynamic
install

Language
structure

CICS Web services
assistant

handlers

handlers
 Chapter 3. CICS as a service provider and requester 49

with your pipeline configuration files. The exact configuration of the pipeline will
depend upon the specific needs of the application.

There are two kinds of pipeline configuration files:

� One describes the configuration of a service provider pipeline
� The other describes the configuration of a service requester pipeline

Each is defined by its own schema, and each has a different root element. The
root element for a provider pipeline is <provider_pipeline>, while the root
element for a requester pipeline is <requester_pipeline>.

The immediate child elements of the <provider_pipeline> element are as
follows:

� A mandatory <service> element, which specifies the message handlers that
are invoked for every request, including the terminal message handler. The
terminal message handler is the last handler in the pipeline.

� An optional <transport> element, which specifies message handlers that are
selected at run time based upon the resources that are being used for the
message transport. For example, for the HTTP transport, you can specify that
CICS should invoke the message handler only when the port on which the
request was received is defined on a specific TCPIPSERVICE definition. For
the WebSphere MQ transport, you can specify that CICS should invoke the
message handler only when the inbound message arrives at a specific
message queue.

� An optional <apphandler> element, which specifies the name of the program
that the terminal message handler will link to by default, that is, the name of
the target application program (or wrapper program) that provides the service.
Message handlers can specify a different program at run time by using the
DFHWS-APPHANDLER container, so the name coded here is not always the
program to which it is linked.

The <apphandler> element is used when the last message handler in the
pipeline (the terminal handler) is one of the CICS-supplied SOAP message
handlers.

If you do not code an <apphandler> element, one of the message handlers
must use the DFHWS-APPHANDLER container to specify the name of the
program.

Important: When you use DFHLS2WS or DFHWS2LS to deploy your
service provider, you must specify DFHPITP as the target program.
DFHPITP will get the name of your target application program (or wrapper
program) from the wsbind file.
50 Developing Web Services Using CICS, WMQ, and WMB

� An optional <service_parameter_list> element, which contains parameters
that CICS makes available to the message handlers in the pipeline via
container DFH-SERVICEPLIST.

Example 3-1 shows the sample service provider pipeline configuration file
basicsoap11provider.xml.

Example 3-1 Configuration file for service provider

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline
xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
provider.xsd ">
 <service>
 <terminal_handler>
 <cics_soap_1.1_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

Following are the immediate sub-elements of a <requester_pipeline> element:

� An optional <service> element, which specifies the message handlers that
are invoked for every request

� An optional <transport> element, which specifies message handlers that are
selected at run time, based upon the resources that are being used for the
message transport

� An optional <service_parameter_list> element, which contains parameters
that CICS makes available to the message handlers in the pipeline via
container DFH-SERVICEPLIST

Example 3-2 shows the sample service requester pipeline configuration file
basicsoap11requester.xml.

Example 3-2 Configuration file for service requester

<?xml version="1.0" encoding="EBCDIC-CP-US"?>

Important: A pipeline can be configured to support SOAP 1.1 or SOAP 1.2.
Within your CICS system, you can have many pipelines, some of which
support SOAP 1.1 and some of which support SOAP 1.2.
 Chapter 3. CICS as a service provider and requester 51

<requester_pipeline
xmlns="http://www.ibm.com/software/htp/cics/pipeline"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline
requester.xsd ">
 <service>
 <service_handler_list>
 <cics_soap_1.1_handler/>
 </service_handler_list>
 </service>
</requester_pipeline>

3.5.3 WEBSERVICE

The following three objects define the execution environment that allows a CICS
application program to operate as a Web service provider or a Web service
requester:

� The Web service description

� The Web service binding file

� The pipeline

The following three objects are defined to CICS on the following attributes of the
WEBSERVICE resource definition:

� WSDLFILE

� WSBIND

� PIPELINE

The WEBSERVICE definition has a fourth attribute, VALIDATION, which
specifies whether full validation of SOAP messages against the corresponding
schema in the Web service description should be performed at run time.
VALIDATION(YES) ensures that all SOAP messages that are sent and received
are valid XML with respect to the XML schema.

If VALIDATION(NO) is specified, sufficient validation is performed to ensure that
the message contains well-formed XML.

Important: Validation of a SOAP message against a schema incurs
considerable processing overhead, and you should normally specify
VALIDATION(NO) in a production environment.
52 Developing Web Services Using CICS, WMQ, and WMB

Figure 3-8 illustrates the purpose of the WEBSERVICE resource definition.

Figure 3-8 Webservice resource

You can create WEBSERVICE resource definitions in the following ways:

� Using the CEDA transaction

� Using the DFHCSDUP batch utility

� Using CICSPlex SM Business Application Services

� Using the EXEC CICS CREATE WEBSERVICE command

When you install a PIPELINE resource or when you issue a PERFORM PIPELINE
SCAN command (using CEMT or the CICS system programming interface), CICS
scans the directory specified in the PIPELINE’s WSDIR attribute (the pickup
directory) and creates URIMAP and WEBSERVICE resources dynamically. For
each Web service binding file in the directory—each file with the wsbind
suffix—CICS installs a WEBSERVICE and a URIMAP if one does not already
exist. Existing resources are replaced if the information in the binding file is
newer than the existing resources.

pipeline
config

WSBind

WSDL

HFS

CICS TS V3.1

CPIH

Pipeline

data mapping

Business
Logic

handlers

WEBSERVICE

Language
structure

CICS Web services
assistant

handlers

handlers
 Chapter 3. CICS as a service provider and requester 53

The CEMT INQUIRE WEBSERVICE command obtains information about a
WEBSERVICE resource definition. The data returned depends on the type of
Web service.

Web service binding file
A Web services description contains abstract representations of the input and
output messages used by the service. When a service provider or service
requester application executes, CICS needs information about how the content
of the messages maps to the data structures used by the application. This
information is held in a Web service binding file.

Web services binding files are created in the following manners:

� By utility program DFHWS2LS when language structures are generated from
WSDL

� By utility program DFHLS2WS when WSDL is generated from a language
structure

At run time, CICS uses information in the Web service binding file to perform the
mapping between application data structures and SOAP messages.

3.5.4 TCPIPSERVICE

A TCPIPSERVICE definition is required in a service provider that uses the HTTP
transport and contains information about the port on which inbound requests are
received.

You can create TCPIPSERVICE resource definitions in the following ways:

� Using the CEDA transaction

� Using the DFHCSDUP batch utility

� Using CICSPlex SM Business Application Services

� Using the EXEC CICS CREATE TCPIPSERVICE command

3.5.5 Resources checklist

Figure 3-9 on page 55 shows the relationships between CICS Web services
definitions.
54 Developing Web Services Using CICS, WMQ, and WMB

Figure 3-9 CICS Resource relationships

The resources that are required to support a particular application program
depend upon the following:

� Whether the application program is a service provide or a service requester

� Whether the application is deployed with the CICS Web services assistant, or
you write your own code to map between your application data and SOAP
messages

Table 3-1 on page 56 is a checklist of resource definitions.

dynamic
install

CICS
URIMAP

USAGE(PIPELINE)
HOST
PATH

PIPELINE
WEBSERVICE

PIPELINE
CONFIGFILE

SHELF
WSDIR

WEBSERVICE
PIPELINE
WSBIND

WSDLFILE

config

WSBind

WSDL

pick-up directory

HFS

Web service assistant

COMMAREA
structure

BINDING=
URI=
PGMNAME=
PGMINT=
 Chapter 3. CICS as a service provider and requester 55

Table 3-1 Resource checklist

Service
requester or
provider

CICS Web
services
assistant used

PIPELINE
required

WEBSERVICE
required

URIMAP
required

TCPIPSERVICE
required

Provider yes yes yes (1) yes (1) (2)

no yes no yes (2)

Requester yes yes yes no no

no yes no no no

(1). When the CICS Web services assistant is used to deploy an application program, the WEBSERVICE and
URIMAP resources can be created automatically when the PIPELINE’s pickup directory is scanned. This happens
when the PIPELINE resource is installed or as a result of a PERFORM PIPELINE SCAN command.

(2). A TCPIPSERVICE resource is required when the HTTP transport is used. When the WebSphere MQ transport is
used, you must define a queue.
56 Developing Web Services Using CICS, WMQ, and WMB

Chapter 4. Modern Web services
development tools

In this chapter we provide a brief overview of the main tools we use for
developing CICS Web services. CICS TS3.1 introduces the Web services
assistant, which is a set of batch utilities to aid in the generation of the files and
resources needed for converting existing structures in CICS to Web service
artifacts.

With reference to modern tooling, we also provide a brief description of the
Eclipse platform and architecture and introduce one implementation of this
framework—WebSphere Developer for System z. We describe the main features
of this tool and define the general concepts of getting started and working in the
environment, showing how powerful it is in the context of application
development.

4

© Copyright IBM Corp. 2007. All rights reserved. 57

4.1 Web services assistant in CICS TS 3.1

The CICS Web services assistant is a set of batch utilities that can help you
transform existing CICS applications into Web services and enable CICS
applications to use Web services provided by external providers. The assistant
supports rapid deployment of CICS applications for use in service providers and
service requesters, with minimal programming effort.

When you use the Web Services Assistant for CICS, you do not have to write
your own code for parsing inbound messages and for constructing outbound
messages; instead, CICS maps data between the body of a SOAP message and
the application program’s data structure.

Resource definitions are, for the most part, generated and installed
automatically. You do have to define PIPELINE resources, but you can, in many
cases, use one of the pipeline configuration files that CICS provides.

The assistant can create a WSDL document from a simple language structure or
a language structure from an existing WSDL document, and the assistant
supports COBOL, C/C++, and PL/I. It also generates information used to enable
automatic run-time conversion of the SOAP messages to containers and
COMMAREAs, and vice versa.

However, the assistant cannot deal with every possibility, and there are times
when you will need to take a different approach. Following are some examples:

� You do not want to use SOAP messages.

If you prefer to use a non-SOAP protocol for your messages, you can do so.
However, your application programs are responsible for parsing inbound
messages and constructing outbound messages.

� You want to use SOAP messages, but do not want CICS to parse them.

For an inbound message, the assistant maps the SOAP body to an
application data structure. In some applications, you may want to parse the
SOAP body yourself.

� The CICS Web services assistant does not support your application’s data
structure.

Although the CICS Web services assistant supports the most common data
types and structures, there are some that are not supported. For example,
OCCURS DEPENDING ON and REDEFINES on data description entries are
not supported. For full details on the data types and structures supported by
the CICS Web services assistant, see the CICS Web Services Guide,
SC34-6458.
58 Developing Web Services Using CICS, WMQ, and WMB

In this situation, you should consider one of the following alternatives:

– Provide a wrapper program that maps your application’s data to a format
that the assistant can support.

– Use WebSphere Developer for System z. See section 4.2, “WebSphere
Developer for System z” on page 61.

4.1.1 Web services assistant utility programs

The CICS Web services assistant provides two utility programs: DFHLS2WS and
DFHWS2LS. They are described in detail in this section.

DFHLS2WS
The DFHLS2WS program generates a Web service description and Web service
binding file from a language structure. Example 4-1 shows sample JCL for
running DFHLS2WS.

Example 4-1 DFHLS2WS JCL sample

//LS2WS JOB ’accounting information’,name,MSGCLASS=A
// SET QT=’’’’
//JAVAPROG EXEC DFHLS2WS,
// TMPFILE=&QT.&SYSUID.&QT
//INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.CICS.SDFHSAMP
REQMEM=DFH0XCP4
RESPMEM=DFH0XCP4
LANG=COBOL
PGMNAME=DFH0XCMN
URI=exampleApp/inquireSingle
PGMINT=COMMAREA
WSBIND=/u/exampleapp/wsbind/inquireSingle.wsbind
WSDL=/u/exampleapp/wsdl/inquireSingle.wsdl
/*

The main input parameters are as follows:

� PDSLIB

Specifies the name of the partitioned data set that contains the high-level
language data structures to be processed.
 Chapter 4. Modern Web services development tools 59

� REQMEM

Specifies the name of the partitioned data set member that contains the
high-level language structure for the Web service request.

– For a service provider, the Web service request is the input to the
application program.

– For a service requester, the Web service request is the output from the
application program.

� RESPMEM

Specifies the name of the partitioned data set member that contains the
high-level language structure for the Web service response:

– For a service provider, the Web service response is the output from the
application program.

– For a service requester, the Web service response is the input to the
application program.

� LANG

Specifies the language of the language structure to be created.

� PGMNAME

Specifies the name of the target CICS application program that is being
exposed as a Web service.

� URI

In a service provider, this parameter specifies the relative URI that a client will
use to access the Web service. CICS uses the value specified when it
generates a URIMAP resource from the Web service binding file created by
DFHLS2WS. The parameter specifies the path component of the URI to
which the URIMAP definition applies.

� PGMINT

For a service provider, specifies how CICS passes data to the target
application program (using a COMMAREA or a channel).

� WSBIND

Specifies the HFS name of the Web service binding file.

� WSDL

Specifies the HFS name of the Web service description file.

In Chapter 6 we show how we used this utility to convert our sample application
into Web service objects.
60 Developing Web Services Using CICS, WMQ, and WMB

DFHWS2LS
DFHWS2LS generates a language structure and Web services binding file from
a Web services description. Example 4-2 shows sample JCL for running
DFHWS2LS.

Example 4-2 DFHWS2LS JCL sample

//WS2LS JOB ’accounting information’,name,MSGCLASS=A
// SET QT=’’’’
//JAVAPROG EXEC DFHWS2LS,
// TMPFILE=&QT.&SYSUID.&QT
//INPUT.SYSUT1 DD *
PDSLIB=//CICSHLQ.CICS.SDFHSAMP
REQMEM=CPYBK1
RESPMEM=CPYBK2
LANG=COBOL
PGMNAME=DFH0XCMN
URI=exampleApp/inquireSingle
PGMINT=COMMAREA
WSBIND=/u/exampleapp/wsbind/inquireSingle.wsbind
WSDL=/u/exampleapp/wsdl/inquireSingle.wsdl
/*

4.2 WebSphere Developer for System z

WebSphere Developer for System z is based on the IBM Rational® Software
Development Platform and facilitates the development of both Java and
z/OS-based applications. It includes capabilities that make traditional z/OS
mainframe development, Web development, and integrated composite
development faster and more efficient.

Of particular interest to this book, WebSphere Developer for System z (WD/z)
contains tools that support the development of Web services and the XML
enablement of new and existing CICS COBOL and C/C++ applications. We
describe some of the features and the use of WD/z that assisted us in the
development, testing, and deployment of our sample application.

The implementation of how we used the product with our sample application is
explored and demonstrated later in this IBM Redbooks publication.
 Chapter 4. Modern Web services development tools 61

4.2.1 Introducing WebSphere Developer for System z

WebSphere Developer for System z V7.0 comprises an interactive
workstation-based environment and an integrated set of tools to help create,
maintain, and re-use applications for traditional processing or inclusion in an
SOA. It consists of a common workbench that supports end-to-end, model-based
development, run-time testing, and rapid deployment of simple and complex
applications.

Following are some of the main features of WD/z:

� Accelerates the development of Web applications, traditional COBOL and
PL/I applications, Web services, XML-based interfaces, and high-level
Enterprise Generation Language

� Includes significant enhancements that increase efficiency of traditional
mainframe, Web development, and services

� Promotes the re-use and transformation of existing applications to help
reduce costs and shorten the development cycle

� Facilitates mainframe application development, Web development, and
integrated mixed workload or composite development faster and more
efficient

� Enables business service integration for CICS applications

� Consists of workbench and integrated tools that support model-based
application development, runtime testing, and rapid deployment

� Provides an interactive, workstation-based environment with convenient and
consistent access to IBM z/OS datasets, HFS, and JES Spool files

In this book, we assume that the audience is a traditional mainframe developer
with little experience in modern tooling techniques and terminologies.

This chapter further discusses some of the basics for WebSphere Developer for
System z and defines the fundamental concepts upon which this product is built.
We also provide some panel shots to assist with the visualization of the elements
that make up the working environment of this tool.

4.2.2 The Eclipse platform

WebSphere Developer for System z is a product based on the Eclipse platform.
The Eclipse platform is a GUI toolkit and plug-in architecture for building rich
client applications. It is defined at www.eclipse.org as follows:

“Eclipse is an open source community whose projects are focused on
building an open development platform comprised of extensible
62 Developing Web Services Using CICS, WMQ, and WMB

frameworks, tools and runtimes for building, deploying and managing
software across the lifecycle.”

Eclipse overview
The Eclipse platform incorporates the concept of a “work space” that maintains
everything needed by the developer for building and testing a project. The work
space is locally maintained on a developer’s own workstation, containing the
configuration settings of tools, plug-ins, the data objects being edited, and the
intermediate and complete form of the components being developed.

The use of a local work space allows for very efficient team collaboration through
repositories that can be Internet, rather than LAN, accessible.

Eclipse architecture
The Eclipse platform is a framework with a powerful set of services structured as
subsystems that are implemented in one or more plug-ins. Following are the
subsystems, or major components, that make up the framework:

– Platform runtime

– Work space

– Workbench

– Team support

– Help

Figure 4-1 shows a simplified view of the major components.

Figure 4-1 The Eclipse platform components

Workbench

Help

Team

JDTSWT/JFace

Workspace
PDE

Platform run-time New tool
 Chapter 4. Modern Web services development tools 63

� Platform

The platform run time is the kernel that discovers at start-up what plug-ins are
installed and creates a registry of information about them. To reduce start-up
time and resource usage, it does not load any plug-in until it is actually
needed. Except for the kernel, everything else is implemented as a plug-in.

� Work space

The work space is the plug-in responsible for managing the user's resources.
This includes the projects the user creates, the files in those projects, and
changes to files and other resources. The work space is also responsible for
notifying other interested plug-ins about resource changes, such as files that
are created, deleted, or changed.

� Workbench

The workbench provides Eclipse with a user interface. It is built using the
Standard Widget Toolkit (SWT)—a nonstandard alternative to Java's
Swing/AWT GUI API—and a higher-level API, JFace, built on top of SWT that
provides user interface components including file buffers, text handling, and
text editors.

� Team support

The team support component provides support for version control and
configuration management. It adds views as necessary to allow the user to
interact with what ever version control system (if any) is being used. Most
plug-ins do not need to interact with the team support component unless they
provide version control services.

� Help

The help component parallels the extensibility of the Eclipse Platform itself. In
the same way that plug-ins add functionality to Eclipse, help provides an
add-on navigation structure that allows tools to add documentation in the form
of HTML files.

4.2.3 The WebSphere Developer for System z Workbench

As we are working with the WebSphere Developer for System z (WD/z) product
in this book, we now introduce some terms which are also found throughout
other Eclipse-based products using WD/z as the visual example.

The term workbench refers to the desktop development environment. The
workbench aims to achieve seamless tool integration and controlled openness
by providing a common paradigm for the creation, management, and navigation
of work space resources.
64 Developing Web Services Using CICS, WMQ, and WMB

The user interfaces are based on editors, views, and perspectives. From a user’s
standpoint, a workbench window visually consists of several views and editors.
Perspectives manifest themselves in the selection and arrangements of editors
and views visible on the window. More than one workbench window usually
shows on the desktop at any given time.

Editors allow the user to open, edit, and save objects and files. Views provide
information about some object that the user is working within the workbench. A
view may assist an editor by providing information about the document being
edited.

When you first start up WD/z, a Welcome window appears, as in Figure 4-2.
There are tutorials, samples, and overviews that are accessible from this window,
which we highly recommend for first-time users to become familiar with the
tooling.

To go to the workbench, click the highlighted icon, as shown in Figure 4-2.

Figure 4-2 The WD/z Welcome window with Workbench selection

In WD/z, the default workbench comprises the z/OS Projects Perspective. This is
shown in Figure 4-3 on page 66. Notice that the current perspective is set to
z/OS Projects in the top-right of the workbench.
 Chapter 4. Modern Web services development tools 65

To change perspectives, there is a drop down selection icon to the left of the
current perspective name. Alternatively, you can use Window → Open
Perspective to select a different set of views that pertain to the type of
development task you are performing.

Figure 4-3 The z/OS Projects (default) Workbench

With reference to Figure 4-3, there are a number of views or panes that are now
displayed.

The Navigator view in this perspective is labeled z/OS Projects, and it provides
an Explorer-type view of projects and their members, which can be selected for
edit, create, and delete. The greyed out panel to the right of the Navigator is the
Editor area. Depending on the type of document selected in the Navigator, an
appropriate editor window opens here, using a plug-in provided with the product.
If an appropriate editor registered for a particular document type is not found (for
example, a .doc file on a Windows® system), Eclipse will try to open the
document using an external editor.

The Outline and the Properties views below the Navigator, present an outline of
the document currently selected in the editor and the properties that are
66 Developing Web Services Using CICS, WMQ, and WMB

attributed to the file or document. The precise nature of these views depends on
the editor and the type of document. For a Java source file, for example, the
outline displays any declared classes, attributes, and methods.

The Remote Systems view allows connections to be made to Remote hosts and
then provides an explorer view of the resources on the host. In WD/z,
connections can be made to either AIX® or z/OS host systems.

We demonstrate connecting to a host and viewing remote resources in section
5.3.1, “Establish a connection to the host” on page 103.

4.2.4 z/OS application development tools in WD/z

z/OS application development tools provide an interactive, workstation-based
environment where you can develop mainframe applications in Assembler,
COBOL, C/C++ or PL/I. The environment gives you an interactive way to edit on
the workstation and prepare output on the mainframe. Interaction with z/OS
allows you to do the following:

� Create or modify the code in the z/OS LPEX editor. The editor maintains fixed
length records, sequence numbers, and file locking (ISPF ENQ/DEQ) as
appropriate.

� Validate the source using the syntax check function.

� Debug the code.

� Generate and customize JCL as needed.

You can access z/OS data sets by way of a workstation-like directory structure,
and you can process CLISTs and REXX™ EXECs in the following way:

1. Edit them on the workstation.

2. Transfer them to z/OS.

Tip: All of the views and panes within the Workbench can be resized and
dragged around the work space according to how you want to view the
contents. Following are some other useful tips:

� Double-click the tab title of the pane to maximize the window, and
double-click again to reduce back.

� Use Window → Reset Perspective to return to the default perspective.

� Other views can be added to the Workbench using Window → Show
View.

� When editing a document or file, ctrl+S saves the changes; otherwise, if
the window is closed, you are prompted to save the changes.
 Chapter 4. Modern Web services development tools 67

3. Run them on z/OS.

4. View the output in the workstation environment.

The code written using the editors in WD/z can target CICS, IMS™, DB2, or
batch.

We will demonstrate further the z/OS application development tools described
here in Chapters 5 and 6, where we use the tooling to assist in both the
development and the testing of our sample application.

4.2.5 Web services development scenarios

WebSphere Developer for System z provides the development framework for
major Web service enablement scenarios that are typical for a service-oriented
architecture (SOA). The functionality comes with the Enterprise Service Tools
(EST) in WD/z, which assist in creating enterprise applications that fit the
established patterns of Web services enablement.

Following are the major Web services enablement scenarios that are typical for a
service-oriented architecture:

– Bottom-up development

– Meet-in-the-middle development

– Top-down development

The scenarios are described in the following two contexts:

1. The creation of a Web service that invokes a single application. This context
is applicable to most types of Enterprise Service Tools projects.

2. The creation of a comprehensive Web service capable of collecting and
processing data from multiple CICS applications or from other Web services.
This context is applicable to service flow projects.

In this book, we demonstrate the bottom-up approach within an EST
single-service project.

Bottom-up development
This approach generates a Web service description and run-time specific
inbound and outbound XML message processing from a high-level data
structure. You can use this method to create a Web service provider program for
an existing CICS application.
68 Developing Web Services Using CICS, WMQ, and WMB

Meet-in-the-middle development
This defines mappings between high level data structures and WSDL, XML, or
XSD files. You can use this method to generate run-time specific inbound and
outbound XML message processing based on the mappings.

Top-down development
This generates a high-level language structure and run-time specific inbound and
outbound XML message processing from a Web service description WSDL file.
You can use this method to do the following:

� Create a Web service provider program (one that runs using Web services for
CICS protocols) for a new application.

� Create a Web service provider program (one that runs using Web services for
CICS protocols) for an existing application.

� Create a Web service requester program (one that runs using Web services
for CICS protocols).

4.2.6 Enterprise Service Tools

Enterprise Service Tools (EST) is an integrated perspective that assists a CICS
developer in the following tasks:

� Creating a CICS Web service that uses a new or existing CICS application as
its application component.

� Creating a SOAP-enabled CICS Web service that uses a new or existing
CICS application as its application component.

� Creating an IMS SOAP Gateway Web service that uses a new or existing IMS
application as its application component.

� Creating a Web service that is not run-time specific from a new or existing
application.

� Using the System z Database Application Generator to create a COBOL
CICS application that accesses a Z/OS DB2 database.

� Developing a comprehensive Web service that collects and processes data
from multiple sources, including CICS non-terminal applications, CICS
terminal applications, and Web services.

Enterprise Service Tools combine capabilities that were formerly available in the
XML Services for the Enterprise plug-in and the Service Flow Modeller
plug-in. EST features an enhanced user interface that increases usability and
simplifies the overall service and flow development process.
 Chapter 4. Modern Web services development tools 69

4.2.7 Web Services Enablement wizard

The Web Services Enablement wizard is a tool that supports the bottom-up
approach for creating Web services based on existing CICS COBOL programs. It
takes, as input, the COMMAREA copybook or a CONTAINER data structure.
The XML structure and data types are then derived from the COBOL data
declarations. Based on these, the Web Services Enablement wizard generates
the set of artifacts shown in Figure 4-4.

Figure 4-4 Artifacts generated by WD/z Web Services wizard

Following are the artifacts generated by the Web Services Enablement wizard:

Input converter

A COBOL program that takes an incoming XML document and maps it into
the corresponding COBOL data structure that the existing CICS application
expects.

Output converter

A COBOL program that takes the COBOL data results returned from the
CICS application and maps them to an XML document.

Converter driver

A COBOL program that shows how the input and output converters can be
used to interact with the existing CICS application.
70 Developing Web Services Using CICS, WMQ, and WMB

Input document XML schema definition (XSD)

XML schema that describes the incoming XML document.

Output document XML schema definition (XSD)

XML schema that describes the outgoing XML document.

WSDL

Web service description file.

WSBind

Web service binding file.

For additional information visit the WebSphere Developer for System z Web site
at the following Web address:

http://www.ibm.com/software/awdtools/devzseries/

We demonstrate the use of this wizard to generate the Web service artifacts for
our sample program in section 6.2, “Using WD/z to generate WSDL” on
page 123.
 Chapter 4. Modern Web services development tools 71

http://www.ibm.com/software/awdtools/devzseries/

72 Developing Web Services Using CICS, WMQ, and WMB

Chapter 5. Development of the Change
of Address CICS application

In this chapter we describe our Change of Address application CICSWSAP and
how we developed the presentation logic and the business logic into separate
functions or services that can be easily exposed as Web services.

Here we describe the development of the mainframe components of the Change
of Address application. This includes the following:

� Breakdown of the CICS application

� Development of the BMS presentation logic

� Functions of the Business Logic components

� The MQ and Message Broker components

We also demonstrate how WebSphere Developer for System z can be used to
develop presentation logic through the BMS Editor. We assume that you have
very little experience with WD/z; therefore, some basic functions are described
throughout this chapter to familiarize you with enough information so you can
utilize some of the z/OS development functionality.

Full source code is downloadable via the Additional Materials link for this IBM
Redbooks publication.

5

© Copyright IBM Corp. 2007. All rights reserved. 73

5.1 Breakdown of the CICS application

This section describes the details of the Change of Address application. An
overview of the complete application was given in section 1.5, “The Change of
Address application” on page 8, so we will concentrate on the CICS application
specifically here.

5.1.1 Overview of the approach to CICS application development

The CICS application was initially developed as a CICS/BMS menu driven
system. This enabled our developers, who were new to CICS Web services, to
develop and test a traditional application while they learned the new WD/z
tooling. By using careful application structuring, we kept the business logic well
separated from the BMS presentation logic. This is the key to easy transition to a
CICS Web service using the CICS Web Services Assistant.

As discussed in Chapter 4, “Modern Web services development tools” on
page 57, we employed the newly released WebSphere Application Developer for
Systems z V7 to create and edit the BMS maps. This facility is a great benefit to
the traditional BMS developer as it provides true drag and drop BMS map
creation. BMS maps are edited directly out of mainframe PDS(E) libraries.
Likewise, JCL editing and job-submission is friendly and efficient. The default
LPEX editor provides more of a Windows Notepad-like editor. We say default
here because there is a significant number of editor styles available. If desired,
an ISPF- like editor is available under Window → Preferences: LPEX. (See
Figure 5-1 on page 75.) The editors also provide colored parsing and syntax
error notifications as you type.
74 Developing Web Services Using CICS, WMQ, and WMB

Figure 5-1 LPEX Editor choices

Job output is readily available under the JES key of the Remote Systems pane:

Figure 5-2 Accessing Job output
 Chapter 5. Development of the Change of Address CICS application 75

WD/z also contains a 3270 emulator, allowing full window-based testing of
applications as they develop.

Figure 5-3 A 3270 screen in WD/z

What this means is that the CICS developer is freed from the need to continually
switch between 3270 mainframe sessions and WD/z in the edit-compile-test
sequence.

During development, as simple functions completed testing as a BMS
application, we created the WSDL & WSBind using the DFHLS2WS utility. We
carried out simple testing of these generated Web services initially using the
Web Services Explorer feature that is part of the underlying RAD software.

5.1.2 Separation of presentation, business, and data logic

Separation of business logic from presentation and data logic has become a
tenet of modern programing. This stems from the 3-tier software design pattern
that originates even before client-server first became popular. Presentation
engines (clients) made calls to the business logic (server), which called a back
end database system. The presentation layer never calls the data layer directly.
76 Developing Web Services Using CICS, WMQ, and WMB

The data layer is typically insulated from the business layer by a standard
interface such as SQL.

This is good practice for many reasons including the following:

� Applications can have a multitude of presentation interfaces. Perhaps a Web
interface as well as a 3270 interface.

� Organizations tend to have graphic designers produce presentation
interfaces, particularly for Web applications. This staff should not have to
worry about business or data logic.

� Independence of presentation implementation from business or data
implementation. Indeed, they might be on different platforms.

� Components can be upgraded independently.

� The usual non-functional reasons such as reliability, scalability, security,
robustness, recoverability.

Keeping these three layers separate is easy when developing from the ground
up. Keeping all data in a database system, then ensuring separation of the BMS
calls from the business logic is then fairly straightforward.

Importantly, the interface to the business logic is then a mapped data structure of
input and output parameters. For smaller structures (< 32Kb), we use CICS
COMMAREAS to contain this structure. But the facility is present in CICS to
handle larger structures using containers and channels. Given the simplicity of
our application, we mostly use COMMAREAS.
 Chapter 5. Development of the Change of Address CICS application 77

5.1.3 Overview of the application

Figure 5-4 Application design of CICSWSAP

5.1.4 Database schema

The following tables are defined on our DB2 for z/OS system:

ADDRESS (
ADDRESSHASH INTEGER PRIMARY KEY NOT NULL,
ADDRESSLINE1 CHAR(100) NOT NULL,
ADDRESSLINE2 CHAR(100),

Mainframe operator enters
Customer change of address request

CICS Web Service
extracts data from DB2
and sends to client

Txn makes updates to
DB2 and puts item on
MQ queue

DB2
MQ

WMB
Broker takes item from
MQ and publishes to all
interested parties

POSTAL
SERVICE
MAINFRAME
System z

MQ Client MQ Client MQ Client

Corp 2

MQ Client

Corp 3 Corp nCorp 1. Retrieves published
message and looks up
customer details on local
DB. Calls CICS
RetrieveAddress Web
Service to get new address
details and then updates
local DB

Local
Customer DB
Table
78 Developing Web Services Using CICS, WMQ, and WMB

SUBURB CHAR(50) NOT NULL,
STATE CHAR(10) NOT NULL,
POSTCODE CHAR(10) NOT NULL,
LASTUPDATE TIMESTAMP NOT NULL)

NAMES (
NAMEREF INTEGER PRIMARY KEY NOT NULL GENERATED
ALWAYS AS IDENTITY
(START WITH 1, INCREMENT BY 1),
FIRSTNAME CHAR(50) NOT NULL,
MIDDLENAME CHAR(50),
LASTNAME CHAR(50) NOT NULL,
ADDRESSHASH INTEGER NOT NULL,
OLDADDRESSHASH INTEGER,
LASTUPDATE TIMESTAMP NOT NULL)
CORPCLIENTS(
ID INTEGER PRIMARY KEY NOT NULL
GENERATED ALWAYS AS IDENTITY
(START WITH 1, INCREMENT BY 1),
SHORTNAME CHAR(10) NOT NULL,
LONGNAME CHAR(50) NOT NULL,
DESCRIPTION VARCHAR(500))

AUDIT (
AUDITREF INTEGER PRIMARY KEY NOT NULL
GENERATED ALWAYS AS IDENTITY
(START WITH 1, INCREMENT BY 1),
ACTIVITYTIME TIMESTAMP,
ACTIVITY CHAR(10) CHECK (ACTIVITY IN
('ADD', 'DELETE', 'UPDATE', 'READ', 'ACK')),
NAMEREF INTEGER NOT NULL,
ACTIVITYBY INTEGER NOT NULL)

Figure 5-5 on page 80 displays the relationships between these tables.
 Chapter 5. Development of the Change of Address CICS application 79

Figure 5-5 Database relationships

5.1.5 Application schema

This section explains the application schema.

Programs
Programs have the following name structure:

ITSOxxnn

Where: xx indicates the function, for example CA is Corporate
Acknowledgements and nn is a two-digit number of the program.

Typically nn=01 is the initial program that displays the first BMS menu of the
function. nn=02 retrieves the BMS map and sets up the COMMAREA to call the
business function and then displays the results. nn=03, 04 ... are the business
layer programs of this particular function.

Transactions
Transactions are identified as follows: ITnn

where nn=00, 01 ...

The only transaction worthy of individual mention is IT00 - the main menu
transaction.
80 Developing Web Services Using CICS, WMQ, and WMB

Map sets/maps
Map sets are identified as follows: ITSOMSn

where n=0, 1 ...

WMQ queues
WMQ queues are prefixed with CICSWSAP. The main publication queue is
called CICSWSAP.PUBLICATION.QUEUE, from which the pub/sub function
(see Chapter 7) distributes messages to subscriber queues. These are typically
prefixed CICSWSAP.ADDRESS.CHANGE.

5.1.6 Application functions

Following are the major business functions of our application. There are some
other minor functions and test harnesses included in the source.

Get Hash
Description
Return a hash key calculated from the full address supplied in the input
parameters. This key should be unique for the given parameters.

Availability
Publicly available as a Web service call.

Logic
Calculate hash value from string AddressLine1 + AddressLine2 + Suburb + State
+ Postcode.

Algorithm is known as djb2. Quick, efficient with a good spread of results.

Input parameters
Address input parameters must be in the standard format provided by the
StandardAddress function in Table 5-1.

Table 5-1 GetHash (ITSOGH03) input parameters

Name Format Requirement Comments

AddressLine1 Text Required In Standard Format

AddressLine2 Text Optional In Standard Format

Suburb Text Required In Standard Format

State Text Required In Standard Format
 Chapter 5. Development of the Change of Address CICS application 81

Output parameters
Table 5-2 GetHash (ITSOGH03) Output Parameters

Return codes
RC=0 mean OK.

Only returns RC=0. Might fail if input parms are in read-protected storage.

Corporate client registration
Description
Register a corporate client. Note, this does not register a pub/sub subscription,
although such functionality could easily be built into this program.

Availability
Internal only.

Input parameters
Table 5-3 CorpClient (ITSOCC03) input parameters

Output parameters
Table 5-4 CorpClient (ITSOCC03) output parameters

PostCode Text Required In Standard Format

Name Format Comments

AddressHash Large Integer Up to 11 digits;
possibly negative.

ReturnCode Integer

Reason Text

Name Format Requirement Comments

ShortName Text Required ------------------------

LongName Text Optional ------------------------

Description Text Optional ------------------------

Name Format Comments

CorpClientId Integer -----------------------------------

Name Format Requirement Comments
82 Developing Web Services Using CICS, WMQ, and WMB

Return codes
RC=0 means OK. CorpClient Added.
RC=1 means SQL INSERT to CORPCLIENTS table failed. See Reason.
RC=2 means SQL SELECT to obtain CorpClient ID failed. See Reason.

Logic

� Check input parameter

� INSERT new client into CORPCLIENTS table

� If INSERT failed

– Set RC=1, Reason=SQLCODE, SQLSTATE

– Return

� SELECT row just entered to get generated CorpClient ID

� If SELECT failed

– Set RC=2, Reason=SQLCODE, SQLSTATE

– Return

� Set RC=0, CorpClientId, Reason

� Return

Add address
Description
Add an address to DB2 Address table or return an error code. This function is
called internally by Add/Update Address only, but it is a significant function
factored out of the Add/Update Address. For this reason, this program is called
ITSOUA03, not ITSOAA03.

Availability
Internal only.

Input parameters
Table 5-5 AddAddress (ITSOUA03) input parameters

ReturnCode Integer -----------------------------------

Reason Text ----------------------------------

Name Format Requirement Comments

AddressLine1 Text Required In standard format

Name Format Comments
 Chapter 5. Development of the Change of Address CICS application 83

Output parameters
Table 5-6 AddAddress (ITSOUA03) output parameters

Return Codes
RC=0 mean OK
RC=1 means Address Already exists
RC=2 means SQL Failure

Logic

� Check input parameters

� Call GetHash to get HashCode for address

� INSERT address into ADDRESS table

� If INSERT failed

– If SQLCode indicates address already exists

• Set RC=1, Reason=Address Already Exists

• Set AddressHash

• Return

– Otherwise there was an SQL Error

• Set RC=2, Reason=SQLCODE, SQLSTATE

• Set AddressHash=0

• Return

AddressLine2 Text Optional In standard format

Suburb Text Required In standard format

State Text Required In standard format

PostCode Text Required In standard format

Name Format Comments

AddressHash Large Integer Up to 11 digits.
Possibly negative.

ReturnCode Integer --------------------------------

Reason Text --------------------------------

Name Format Requirement Comments
84 Developing Web Services Using CICS, WMQ, and WMB

� INSERT was OK:

– Set RC=0

– Set AddressHash

– Return

Add/update address
Description
Add or update the address of a relocatee in the local DB2 Names and Address
tables. Post notification to broker of update.

Availability
Internal only.

Input parameters
Table 5-7 Add/update address (ITSOUA04) input parameters

Name Format Requirement Comments

FirstName Text Required In standard format

MiddleName Text Optional In standard format

LastName Text Required In standard format

AddressLine1 Text Required Of new address
in standard format

AddressLine2 Text Required Of new address
in standard format

Suburb Text Required Of new address
in standard format

State Text Required Of new address
in standard format

Postcode Text Required Of new address
in standard format

AddressHash Integer Required Redundant now.
Must set to 0

ClientId Integer Required -----------------------
 Chapter 5. Development of the Change of Address CICS application 85

Output Parameters
Table 5-8 Add/update address (ITSOUA04) Output Parameters

Return Codes
RC=0 means OK
RC=1 means Insert Name Failed - SQL error
RC=2 means Name already exists when trying to do an Add
RC=3 means Current and new address are the same
RC=4 means call to AddAddress Failed
RC=5 means Supplied AddressHash didn't match existing address for name
RC=6 means Cannot update non-existent name entry
RC=7 means Notification to broker failed (MQ error)

Logic

� Attempt to retrieve NAMES table entry for the person named

� If there was a SQL error, other than no NAMES entry

– Set RC=2 Reason=SQLCODE SQLSTATE

– Return

� If there was no NAMES entry

– Call AddAddress to add the address

– If call failed (“Address already exists” is not a failure)

• Set RC=4, Reason=AddAddress reason

• return

– Insert new entry into NAMES table with AddressHash just returned

– If INSERT failed

• Set RC=1, Reason= SQLCODE SQLSTATE

• Perform rollback

• Return

– SELECT the row just added to retrieve the NAMEREF generated

Name Format Comments

NameRef Integer --------------------------------

AddressHash Large Integer Up to 11 digits.
Possibly negative.

ReturnCode Integer ---------------------------------

Reason Text ---------------------------------
86 Developing Web Services Using CICS, WMQ, and WMB

– If SELECT failed

• Set NameRef = -1

• Continue on. Not a big problem.

– MQPUT AddressHash on to publication queue

• If MQPUT failed
Set RC=7, Reason= MQRC
Perform rollback
Return

� NAMES entry already exists

– Call AddAddress to add the address

– If call failed (“Address already exists” is not a failure)

• Set RC=4, Reason=AddAddress reason

• return

– Update NAMES db entry using new address & hashcode

– If UPDATE failed

• Set RC=1, Reason= SQLCODE SQLSTATE

• Perform rollback

• Return

– MQPUT old AddressHash on to publication queue

• If MQPUT failed
Set RC=7, Reason= MQRC
Perform rollback
Return

� Set RC=1, Reason=OK, AddressHash & NameRef

Standard name
Description
Format names in a standard way in terms of capitalization, spacing, and spelling.
There are whole application suites in existence to perform these sorts of
functions. This is not critical to our test application, but it would be in a real
situation. There might even be public Web services in existence that already do
this.

Availability
Publicly available as a Web service call.
 Chapter 5. Development of the Change of Address CICS application 87

Input parameters
Table 5-9 StandardName (ITSOSN03) input parameters

Output parameters
Table 5-10 StandardName (ITSOSN03) output parameters

Return Codes
RC=0 means OK
RC=1 means Not OK

Logic

� Check input parameters

� Format Name

Standard address
Description
Format addresses in a standard way. This allows different organizations to
compare addresses in standard fashion. There are whole application suites in
existence to perform these sorts of functions. This is not critical to our test
application but it would be in a real situation. There might even be public Web
services in existence that already do this.

Availability
Publicly available as a Web service call.

Name Format Requirement Comments

FirstName Text Required -----------------------

MiddleName Text Optional -----------------------

LastName Text Required -----------------------

Name Format Comments

FirstName Text In standard format

MiddleName Text In standard format

LastName Text In standard format

ReturnCode Integer -------------------------------

Reason Text -------------------------------
88 Developing Web Services Using CICS, WMQ, and WMB

Input parameters
Table 5-11 StandardAddress (ITSOSA03) input parameters

Output parameters
Table 5-12 StandardAddress (ITSOSA03) output parameters

Return Codes
RC=0 means OK
RC=1 means Not OK

Logic

� Check input parameters

� Format name

List corporate acknowledgements
Description
Return a list of the corporate clients that were sent the new address of the
relocatee. This does not mean they actually changed this in their own databases,
but they should have.

Name Format Requirement Comments

AddressLine1 Text Required -------------------------

AddressLine2 Text Optional ------------------------

Suburb Text Required ------------------------

State Text Required ------------------------

Postcode Text Required ------------------------

Name Format Comments

AddressLine1 Text In standard format

AddressLine2 Text In standard format

Suburb Text In standard format

State Text In standard format

Postcode Text In standard format

ReturnCode Integer --------------------------------

Reason Text --------------------------------
 Chapter 5. Development of the Change of Address CICS application 89

Availability
Restricted availability. Should be available to relocatee perhaps by a secured
Web page.

Input parameters
Table 5-13 CorpAcknowledgements (ITSOCA03) input parameters

Output Parameters
Table 5-14 CorpAcknowledgements (ITSOCA03)output parameters

Return Codes
RC=0 means OK
RC=1 means Bad input parameter
RC=2 means SQL Error

Logic

� Validate input parms

Name Format Requirement Comments

FirstName Text Required In standard format

MiddleName Text Optional In standard format

LastName Text Required In standard format

AddressLine1 Text Required In standard format

AddressLine2 Text Required In standard format

Suburb Text Required In standard format

State Text Required In standard format

Postcode Text Required In standard format

Name Format Comments

NumberOfResponses Integer ---------------------------------

CorpClient1 Text ---------------------------------

: Text ---------------------------------

CorpClientn Text ---------------------------------

ReturnCode Integer ---------------------------------

Reason Text ---------------------------------
90 Developing Web Services Using CICS, WMQ, and WMB

� If parms invalid

– Return RC=1 Reason="Bad Paramater: " + parm in error

� Query Audit table for all the corp-clients who were told of new address

� If query failed

– Return RC=2 Reason="Query Failed: " + SQL Reason

� Otherwise

– Return RC=0 Reason="OK" with results
 Chapter 5. Development of the Change of Address CICS application 91

5.2 Developing the presentation logic using the BMS
Editor in WD/z

As part of our ground-up development of the sample application, we show how to
use the BMS Editor in WD/z to create our BMS maps. This is a modern tooling
alternative to using the traditional designer (such as SDF II) or straight coding of
BMS source.

The WD/z BMS Editor is associated with .bms map set files and uses the
following Eclipse views in its perspective:

• Project Explorer

Lists the projects and the BMS map sets for that project

• Outline

Lists the maps and artifacts within the map

• Palette

Items associated with BMS maps are listed that can be easily dragged
onto the design canvas

• Properties

Lists the attributes for the maps and the map sets that are highlighted
in the Outline view

This section demonstrates how we created one of the BMS maps for this project.

5.2.1 Create a Project

The following steps show how to create a project, into which we will be able to
create the map set and map objects.

1. Start up WD/z.

2. Click File → New → Project.

3. Select General → Project.

4. Click Next.

5. Type the name of the project, in this example Redbooks.

6. Click Finish.

The local project can be seen in the Project Explorer view in the Other Projects
group.
92 Developing Web Services Using CICS, WMQ, and WMB

Use the following steps to view the Project Explorer pane:

1. Select Window → Show View → Other.

2. Expand the General folder.

3. Click Project Explorer.

The project Redbooks can be seen in the Project Explorer view, as seen in
Figure 5-6.

Figure 5-6 Creating the Redbooks local project

5.2.2 Create a new map set

The following steps show you how to create a map set for this project:

1. Click File → New → Other → zOS.

2. Select BMS → Map set from the list of wizards.

3. Click Next.

4. Select the folder for the destination of the BMS map set file, and enter the
map set name. This is seen in Figure 5-7 on page 94.
 Chapter 5. Development of the Change of Address CICS application 93

Figure 5-7 Defining the Map set name

The map set itsoms1 are now listed in the Redbooks project in the Project
Explorer view, as seen in Figure 5-8 on page 95.
94 Developing Web Services Using CICS, WMQ, and WMB

Figure 5-8 The Map set is created

5.2.3 Designing the BMS map

Now we use the drag and drop technique, dragging from the Palette view and
dropping onto our design canvas to create a BMS map.

1. Double-click the map set name in the Project Explorer view to display a blank
canvas.

2. Left-click and drag the fields from the Palette that you need, and drop them
onto the canvas.

3. Figure 5-9 on page 96 shows that we dropped titles, label, and instruction
constant fields and seven input fields into approximate position.

Tip: As a first time user of an Eclipse-based product, if you close views or
panes within the current perspective and need to retrieve them again, use
Window → Reset Perspective to return the current perspective to it’s default.
 Chapter 5. Development of the Change of Address CICS application 95

Figure 5-9 The design canvas with Palette items

The Outline view in Figure 5-10 on page 97 shows a list of all the fields
associated with the map.
96 Developing Web Services Using CICS, WMQ, and WMB

Figure 5-10 The Outline view shows attribute names for the map

Properties for each of the fields can now be defined by either of the two following
methods:

– Double-clicking the field name in the Outline view.

– Right-clicking the field on the design canvas, and selecting Field
Properties.

The position of the field can be moved by dragging the field around the design
canvas.

4. View the 3270 representation of the map by clicking the Preview tab, and
view or edit the source (if required) by clicking the Source tab. These views
are shown in Figure 5-11 on page 98 and in Figure 5-12 on page 99.

Tip: When defining the properties of each field, the name of the field must be
unique to prevent an error at compile time. The BMS Editor does not syntax
check the generated source for duplicate names.
 Chapter 5. Development of the Change of Address CICS application 97

Figure 5-11 Previewing the Map

5. Save the work using the standard eclipse key stroke Ctrl-S.

Tip: Some times it appears that the work was not saved, or that some of the
panes or views on the workbench go blank. We found that if you exit out of the
current map in the design canvas and then double-click the map again in the
Projects Explorer View, that the panes become visible again.
98 Developing Web Services Using CICS, WMQ, and WMB

Figure 5-12 The generated map source from the BMS Editor

5.2.4 Creating additional maps

The previous section described the creation of a single map into a map set.
Ordinarily there is more than one map within a map set. We will now see how the
BMS Editor handles multiple maps within the map set. There are a couple of
methods for using multiple maps on the design canvas.

The first and easiest way to manage maps on the canvas is to drag and place the
map to the side of the canvas:

1. Click and hold the left mouse button anywhere in the design canvas.

2. Drag and drop the full-window map towards the edge of the canvas view.
Note that the size and the position of the map are displayed in the pop-up
box.

3. In the Palette, click Map.

4. Move the cursor to the design canvas and drop the map.

Alternatively, the map can be ‘hidden’ from view. The Palette contains a Map
object that you can drag onto the design canvas to create additional maps. In
 Chapter 5. Development of the Change of Address CICS application 99

order to view only the current map, the Hide Map option is used to assist with the
layering of maps on the work space.

To demonstrate this, Figure 5-13 shows the result of dragging a map object from
the Palette onto the design canvas for MAP1, which we created in section 5.2.3,
“Designing the BMS map” on page 95, and will be given a default name of MAP2.

Figure 5-13 The map object

The Outline Explorer view shows the newly created MAP2. To work with this
map, you may want to hide MAP1 using the Hide Map option on the MAP1 object
in the Outline Explorer view. Right-click the MAP1 object as shown in Figure 5-14
on page 101.
100 Developing Web Services Using CICS, WMQ, and WMB

Figure 5-14 The Hide Map Option

Now the design canvas shows only the new map, which you can resize and work
on it. The Outline Explorer view shows that the map is hidden as in Figure 5-15
on page 102.
 Chapter 5. Development of the Change of Address CICS application 101

Figure 5-15 The Outline Explorer view showing hidden map

Copying map definitions
Many map sets contain maps that have a common layout or duplicate fields.
From the Outline view of the map sets and maps, either the entire map or any of
the fields within the map can be copied to another map in either the same or a
different map set. Following is the procedure:

1. Right-click the map or field in the Outline view. Multiple fields can be selected
by holding the Ctrl key and clicking on additional fields.

2. Choose Copy.

3. Double-click the destination map set in the Projects view.

4. Click the Outline tab to display the maps in the map set.

5. Right-click the destination map.

6. Choose Paste.

5.3 Creating the BMS map set JCL

Traditionally, JCL is used to compile and install the physical and symbolic
description maps for use within CICS transactions. Another useful feature of the
BMS Editor is functionality to generate JCL for a BMS map set that was created
and saved into an existing z/OS project. The JCL is generated and written to an
existing PDS on the z/OS.
102 Developing Web Services Using CICS, WMQ, and WMB

We used the following process to generate the JCL for one of our map sets.

5.3.1 Establish a connection to the host

A z/OS project must be created, which is a PC-based representation of artifacts,
PDSs, and data set members that also exist on the host. Any objects that are
created or edited in the z/OS project are also created on the MVS™ host in real
time. This makes development of projects for z/OS almost seamless as there is
no need to worry about uploading or creating objects on the host as WD/z does
this for you.

Before a z/OS project can be created, a connection to the host system needs to
be established.

1. In the Remote Systems view, expand New Connection → z/OS.

A window appears, where the connection information is entered. This is
shown in Figure 5-16. We called our Connection REDSC66. The host name
is wtsc66.itso.ibm.com.

2. Click Next. We kept all the defaults.

Figure 5-16 Defining a Remote Connection

Important: Ensure that a PDS on the host exists to hold the generated JCL.
 Chapter 5. Development of the Change of Address CICS application 103

3. Click Finish. If the create of the Connection is successful, the Remote
Systems view will report this, and there is an explorer view of the host that
you can expand to show the file repositories that you want to view in the z/OS
environment. This is seen in Figure 5-17.

Figure 5-17 A successful connection and Explorer view of the host file groups

5.3.2 Filtering and data set mapping tasks

Now that there is a connection to a host z/OS system, there are a couple of set
up tasks to complete. These tasks ensure that the workstation view of the host
and the file transfer to and from the host are customized to accommodate local
naming conventions and workstation file extensions.

We customize the Remote Systems view of the host file subsystems through the
filtering function in WD/z, and ensure that there are mapping rules in place to
accommodate the differences in the naming of PDS members and
Windows-based filenames.

Filtering the Explorer View of the host connection
The z/OS file systems contain hundreds of data sets and even more members,
which you do not necessarily need to display. The tooling allows you to filter the
data set and job names, just as you would by using the asterisk on the PDF
Dslist function or the prefix command in SDSF on the host system.
104 Developing Web Services Using CICS, WMQ, and WMB

As an example, in this book we are interested in the data sets associated with
our CICS application CICSWSAP and in the jobs associated with our CICS
region SCSCPJA6. The method to filter just these files is as follows:

1. If not already connected, right-click the connection name in the Remote
Systems Explorer view.

2. Click Connect.

3. To filter the JES job output to include the jobs associated with our CICS
region, right-click JES → New → New JES Job Filter, as seen in
Figure 5-18.

Figure 5-18 Creating a filter for JES jobs

4. Create the filter by entering strings and * for wildcards, as shown in
Figure 5-19 on page 106.
 Chapter 5. Development of the Change of Address CICS application 105

Figure 5-19 JES Job Filter

5. Enter a filter name, which will appear in the Explorer tree under the JES
category, and then click Finish. The expanded view of your selected job has
the same effect of sub-command ‘?’ in SDSF option ST, and you can view
each of the outputs and perform the same sorts of functions as you would
with the SDSF sub-commands.

6. Similarly, for data set names, right-click MVS Files → New → Filter, and
enter a filter string for the data sets that you want to be displayed in the
expanded view of this Explorer tree. The result is shown in Figure 5-20 on
page 107.
106 Developing Web Services Using CICS, WMQ, and WMB

Figure 5-20 A filtered data set view for our project

z/OS File System Mapping
As part of the default z/OS perspective, there is a view on the work space called
z/OS File System Mapping that provides a list of mapping criteria for the lowest
level qualifier of a PDS and the workstation file extension. If there is a mapping
defined, you can see the workstation file extensions in the Remote Systems view
of the members in a PDS.

Use the following steps to add a map definition:

1. Open the z/OS File System Mapping view.

Use Window → Show View → z/OS File System Mapping if the view is not
already on the work space.

2. Choose the host name in the System pull-down field.

3. Right-click the view, and select Add Data Set Mapping as seen in
Figure 5-21 on page 108.
 Chapter 5. Development of the Change of Address CICS application 107

Figure 5-21 Adding a mapping rule between a PDS member and workstation filename

4. Enter the low-level qualifier of the PDS and the workstation file extension that
it is to be mapped to, as in Figure 5-22. In this example we want to map any
members in PDS called *.*.BMSMAPS to be given a file extension of .bms on
the workstation view.

Figure 5-22 Specifying the mapping rule

5. Click OK, and the mapping criterion should now appear in the view.
108 Developing Web Services Using CICS, WMQ, and WMB

5.3.3 Create a z/OS Project for the map set

In section 5.2.1, “Create a Project” on page 92 we created a general project that
works with objects on the local workstation. To generate JCL for our BMS and
work with a host z/OS system, including the utilization of the Editors in WD/z to
edit existing BMS map sets, JCL, and other files, we need to create a z/OS
Project and associate the map sets to that project.

Use the following steps to create an z/OS Project.

1. Create a connection to the host, as in the previous section.

2. Select File → New → Project.

3. In the New Project panel, expand the z/OS view, and choose z/OS Project as
in Figure 5-23.

Figure 5-23 Creating a z/OS Project

4. Click Next and enter a project name.

5. Check the box to also create an MVS subproject as in Figure 5-24 on
page 110.

Note: In WD/z V7, you need to create a subproject for the z/OS project to
enable some of the functions to operate on the members of the project.
 Chapter 5. Development of the Change of Address CICS application 109

Figure 5-24 Creating a subproject

6. Click Finish, and enter a subproject name.

7. Click Next, and take all of the defaults, for now.

The new project should appear in the z/OS Projects view with the associated
subproject and host name. This is seen in Figure 5-25.

Figure 5-25 z/OS Project Explorer view of z/OS project and subproject
110 Developing Web Services Using CICS, WMQ, and WMB

5.3.4 Import map sets into the z/OS Project

You may already have several map sets created in your traditional CICS
environment that you want to edit or copy. The BMS Editor provides a modern
tooling technique to simplify this process. The BMS Editor can be used on
existing map sets on a host system by importing them into a z/OS subproject, or
map sets created locally can be copied into the z/OS Project from a local,
general project type on the work space.

The effect of copying artifacts from a local project into a z/OS Project is that
these are also created in the PDS on the host. In our demonstration, we will now
allocate a PDS for the z/OS Project to hold our maps and map sets.

1. Right-click the z/OS subproject name in the z/OS Projects Explorer view.

2. Select New → Allocate PDS.

This is shown in Figure 5-26.

Figure 5-26 Allocating a PDS on the z/OS host

3. Provide a name for the PDS that conforms to your local naming conventions.
The BMS Editor in WD/z only recognizes members of the PDS with a file
extension of .bms, so check that there is a z/OS File System Mapping rule in
effect for the name you give to the PDS. Alternately, you can create a
 Chapter 5. Development of the Change of Address CICS application 111

mapping rule, which is described in “z/OS File System Mapping” on
page 107.

4. Fill in the characteristics of the data set, or take the defaults, and then select
Finish.

If filtered, the name of the new PDS is displayed in the Remote Systems view,
and it also appears in the z/OS Projects view in the sub-project.

5. Now you can copy and paste map sets from local projects or from host PDSs
into this new PDS, or vice versa.

6. Open the maps for edit with the BMS Editor by double-clicking the map.

5.3.5 Create the JCL for the map set

Use the following procedure to create the JCL for assembly of a map set:

1. Right-click the .bms map set file in the z/OS Project folder.

2. Select Properties.

3. In the JCL Job Card and Data Set dialog, specify an existing data set to
contain the generated JCL.

4. In the BMS Settings dialog, click the step name, and then choose Edit step to
customize the step name for your site. This is shown in Figure 5-27 on
page 113.

Restriction: If you want to use the BMS Editor on existing maps, the PDS
created or copied from the host system should have a mapping rule in effect
for the file extension .bms. Otherwise only the source can be viewed and
edited. There is no design or preview functionality.
112 Developing Web Services Using CICS, WMQ, and WMB

Figure 5-27 Customizing map set properties

This brings up an Options view where the destination libraries and procedure
name can be edited according to your site specifications.

5. Click OK when finished.

6. Right-click the .bms set file name again.

7. Select Generate JCL → For Assemble or Generate JCL → For Assemble
Link.

8. In the input dialog, specify the target JCL data set name and the member
name. You can also choose to set a different job name.

9. Click OK to complete the generation process.

5.3.6 Submit the JCL and test in CICS

Now we are ready to submit the JCL using the following steps.

1. Right-click the generated JCL member in the data set in the Remote Systems
view.

2. Select Submit.

Note: If the member name already exists, you are prompted to overwrite the
member. If the target PDS does not exists, an error message is displayed.
 Chapter 5. Development of the Change of Address CICS application 113

3. Use JES to view the output of the job.

4. You can find the output in the library that was specified in the BMS Settings
dialog.

5. This map can now be tested in the CICS region with a CECI Send Map
command.
114 Developing Web Services Using CICS, WMQ, and WMB

Chapter 6. Exposing our application as
a Web service

In this chapter we demonstrate the steps we took to expose our CICSWSAP
application as a Web service. There is some set up in the CICS region to enable
Web services support, and we show a few ways that the Web service files, wsdl,
and bindings are generated. We discuss the CICS Web Services Assistant,
program DFHLS2WS and also show how WebSphere Developer for System z
can be used to generate these files. We then test the Web service using the Web
Services Explorer in WD/z.

6

© Copyright IBM Corp. 2007. All rights reserved. 115

6.1 Configuration for Web service enablement

This section outlines the steps to enable the CICS system for running Web
service support. In a basic scenario, HTTP protocol is used as the transport
mechanism, although Web service transports are not limited to HTTP. Other
transports such as WMQ or JMS could equally be used as well.

The following steps outline how we set up our CICS system to expose our
sample application as a Web service provider.

6.1.1 Creating the HFS directories

Web service support requires two HFS directories to be created for our
application:

1. A pickup directory

This contains the Web service wsdl and binding files associated with a Web
service. The files are suffixed by .wsdl and .wsbind. The directory is specified
as the output location for the CICS Web Services Assistant and is associated
with a PIPELINE resource definition.

When a PIPELINE is installed or a CEMT PERFORM SCAN is done on the
PIPELINE, this directory is scanned and information in the bindings file is
used to dynamically create the WEBSERVICE and URIMAP definitions
associated with the PIPELINE. As part of this process, CICS copies any
.wsbind files from this directory into a folder in the shelf directory, which is
given a name by CICS, unique to the region.

2. A shelf directory

The shelf directory stores the Web service bindings files that are associated
with the CICS WEBSERVICE resources. Each of these WEBSERVICE
resources is associated with a CICS PIPELINE and this directory is managed
by the PIPELINE. Several PIPELINES can use the same shelf directory.
These resources are created in section 6.1.2, “Creating the CICS Resources”
on page 117.

The directories created for our CICSWSAP application are as follows:

/u/jnott/cicswsap/shelf

/u/jnott/cicswsap/wsbind/provider

Note: The HFS entries are case sensitive and assume a default CICS HFS
install root of /usr/lpp/cicsts.
116 Developing Web Services Using CICS, WMQ, and WMB

6.1.2 Creating the CICS Resources

Using the steps in this section, create and install the following resources in CICS:

• PIPELINE

• TCPIPSERVICE

• WEBSERVICE

• URIMAP

1. Configuring the PIPELINE resource

The two components of this definition are the PIPELINE resource itself and a
configuration file. The file contains details about the message handlers that will
act on Web service requests and responses as they pass though the pipeline.
This should contain the message handler programs and the SOAP header
processing programs that CICS will invoke when it processes the pipeline.

We start by using the CICS-supplied SOAP 1.1 handler to manage the SOAP
envelopes of inbound and outbound requests of our Web service sample. CICS
provides sample pipeline configuration files that can be used in both the service
provider and service requester scenarios.

In our scenario, we only require one PIPELINE resource for inbound requests,
using our CICS Web service modules in a service provider role. We copied the
PIPELINE definition for inbound requests from the CICS supplied group
DFH$EXWS. We then altered the definition to suit our environment as shown in
Example 6-1 on page 118.

Following are the attributes that we changed:

– Configfile specifies the HFS path where the message handler programs
and header programs are located.

– Shelf specifies the HFS directory where CICS will store the installed
wsbind files.

– Wsdir specifies the HFS pickup directory where the installable wsbind and
WSDL files are located.

Note: Although more than one WEBSERVICE can share a PIPELINE, a single
PIPELINE cannot be configured to be both a provider and a requester
pipeline. A second pipeline must be configured for outbound requests.
 Chapter 6. Exposing our application as a Web service 117

Example 6-1 Our PIPELINE provider definition

2. Creating a TCPIPSERVICE

When a client connects to our Web service over an HTTP service, a
TCPIPSERVICE resource is needed to receive the inbound HTTP traffic. We
created a TCPIPSERVICE definition using CEDA, or you can use the sample
definition in the CICS supplied group DFH$EXWS.

Following are the attributes that we verified or changed from the sample:

– GROup to specify our resource group PJA6ADTX

– STatus should be Open

– POrtnumber to specify an unused port on the CICS system

– PROtocol should be the default HTTP

– TRansaction should be the default CWXN

3. Creating WEBSERVICE and URIMAP resources

Each function that is exposed as a Web service requires a WEBSERVICE
resource to map between the incoming XML of the soap body and the
COMMAREA interface of the program, and a URIMAP resource that routes the
incoming requests to the correct PIPELINE and WEBSERVICE. Although you
can use RDO to define and install these resources, you can also have CICS
create them dynamically when you install a PIPELINE resource.

OBJECT CHARACTERISTICS CICS RELEASE =
0640
 CEDA View PIpeline(WSPIPE01)
 PIpeline : WSPIPE01
 Group : PJA6ADTX
 Description :
 STatus : Enabled Enabled | Disabled
 Configfile : /usr/lpp/cicsts/cicsts31/samples/pipelines/basicsoap11prov
 (Mixed Case) : ider.xml
 :
 :
 :
 SHelf : /u/jnott/CICSWSAP/shelf
 (Mixed Case) :
 :
 :
 :
 Wsdir : /u/jnott/CICSWSAP/wsbind/provider
 (Mixed Case) :
118 Developing Web Services Using CICS, WMQ, and WMB

We chose CICS to dynamically create these resources, but before we install the
PIPELINE, we need to have the wsbind and WSDL files available. The
generation of these files are discussed in the next section, and then these
resources are dynamically installed in section 6.1.4, “Installing the PIPELINE
resource definitions” on page 121.

6.1.3 Generating the WSBind and WSDL files

In our example, we generate the wsbind and WSDL for one of our business logic
functions ITSOGH03. This program simply generates an address hash from an
address string passed in a commarea and returns the value in the same
commarea. The data structure that maps the commarea is called ITSOGHCA. It
is a simple function and can be transformed into a Web service.

The Web Services Assistant easily creates the files needed for the Web service
runtime. We customized the supplied job DFHLS2WS, which takes a language
structure as input and generates a WSDL file and a WSBIND file.

Following are the steps we took:

1. Create an HFS directory in which to store the generated files—this was
already done in a previous step and the name is as follows:

/u/jnott/cicswsap/wsbind/provider

2. Submit the DFHLS2WS job. The job that we ran to generate these files is
shown in Example 6-2 on page 120.
 Chapter 6. Exposing our application as a Web service 119

Example 6-2 The sample job DFHLS2WS

The input to the job includes the following:

PDSLIB - the name of the library that contains the high-level language
structures that the application uses to describe the Web service request and
the Web service response. In our example, as the structure is a C/370™ data
structure, this is the PDS containing the INCLUDEs (rather than copy books
for COBOL).

PGMNAME - the name of the program containing the business logic.

LANG - the language of the program.

REQMEM and RESPMEM - the names of the INCLUDE members for data
mapping of the request and response.

PGMINT - the type of program input—the method that CICS uses to pass
data to the application (COMMAREA or container).

LOGFILE, WSBIND, and WSDL - the full path names of the files to be
generated in the HFS.

URI - the relative HFS address that the client uses to access the Web service.

The generated files are written to the pickup directory in the HFS as specified in
the DFHLS2WS JCL.

//ITSOLSWS JOB ,LS2WS,CLASS=A,MSGCLASS=X,REGION=0M,NOTIFY=&SYSUID
 //*
 //* Generate WSDL from C Commarea structures
 //*
 //JCL JCLLIB ORDER=(CICST31B.CICS.SDFHINST)
 //*
 //LS2WS EXEC DFHLS2WS,
 // TMPFILE='/tmp',PATHPREF='',USSDIR='cicsts31'
 //INPUT.SYSUT1 DD DATA,DLM='@@'
 PDSLIB=//ITSO.CICSWSAP.INCLUDE
 REQMEM=ITSOGHCA
 RESPMEM=ITSOGHCA
 LANG=C
 LOGFILE=/u/jnott/cicswsap/wsbind/provider/GetHash.log
 MAPPING-LEVEL=1.2
 PGMNAME=ITSOGH03
 URI=cicswsap/GetHash
 PGMINT=COMMAREA
 WSBIND=/u/jnott/cicswsap/wsbind/provider/GetHash.wsbind
 WSDL=/u/jnott/cicswsap/wsbind/provider/GetHash.wsdl
 @@
 //
120 Developing Web Services Using CICS, WMQ, and WMB

6.1.4 Installing the PIPELINE resource definitions

When the PIPELINE definition is installed, CICS scans the pickup directory for
wsbind files. When CICS finds the wsbind file, it dynamically creates and installs
a WEBSERVICE resource definition for it. The name of the WEBSERVICE is
derived from the name of the wsbind file.

Then, during the installation of the WEBSERVICE resource, CICS dynamically
creates and installs a URIMAP definition, based on the URI specified in the input
to DFHLS2WS.

1. We installed the PIPELINE definition using CEDA:

CEDA INSTALL PIPELINE(WSPIPE01) GROUP(PJA6ADTX)

2. To check that the install of the WEBSERVICE and URIMAP were successful,
display the WEBSERVICE using CEMT:

CEMT INQUIRE WEBSERVICE

Example 6-3 shows our new WEBSERVICE resource, named to match the
wsbind file in the pickup directory—in our case GetHash.

Example 6-3 The GetHash WEBSERVICE resource

Similarly, the URIMAP resource can be viewed using the URI token from the
WEBSERVICE definition as in Example 6-4:

CEMT INQUIRE URIMAP($207350)

Example 6-4 The URIMAP definition

 INQUIRE WEBSERVICE
 STATUS: RESULTS - OVERTYPE TO MODIFY
+ Webs(GetHash) Pip(WSPIPE01)
 Ins Uri($207350) Pro(ITSOGH03) Com
 Dat(20070201)

INQUIRE URIMAP ($207350)
STATUS: RESULTS - OVERTYPE TO MODIFY
 Uri($207350) Pip Ena Http
 Host(*)
 Path(/cicswsap/GetHash)
 Chapter 6. Exposing our application as a Web service 121

6.1.5 Performing a scan on the PIPELINE

The PERFORM PIPELINE command initiates a scan of the Web service binding
directory that is specified in the WSBIND attribute of the PIPELINE definition.

CICS examines the Web service binding files in the directory to determine if they
should be installed into the system:

– CICS installs any files it finds that were not installed already.

– If a file was installed already, but the file in the directory is newer than the
one currently in use, then the one that is in use is discarded and the newer
file is installed in its place.

Following is the command to perform the scan:

CEMT PERFORM PIPELINE(WSPIPE01) SCAN

When we created wsbind and WSDL files for further Web services in our
example, we used the same PIPELINE (by re-running the DFHLS2WS job). A
PIPELINE SCAN was all that was needed to create the WEBSERVICE and
URIMAP resources.

6.1.6 Verifying the HFS structure just created

We used WD/z to verify the structures created by CICS and the Web Services
Assistant DFHLS2WS. This can also be done via UNIX System Services on the
host, although the Remote Systems view gives a clearer picture of the files we
created from the previous steps. This is shown in Figure 6-1 on page 123.

Tip: While we were testing, we re-ran the Web services assistant utility
DFHLS2WS a few times, which generated newer versions of the wsbind files
in our pickup directory. We performed this pipeline scan in order for CICS to
pick up the newer wsbind file associated with the pipeline. There are no
messages generated on the console, so check MSGUSR for any messages
associated with the scan and to see if duplicate entries were found.
122 Developing Web Services Using CICS, WMQ, and WMB

Figure 6-1 WD/z Remote System view of our Web service HFS structure

From the view in Figure 6-1, there are a few points to note:

– The DFHLS2WS job generated all the files in the pickup directory:

jnott/cicswsap/wsbind/provider

– CICS generated all the directories and files in the shelf directory as a
result of the PERFORM PIPELINE(WSPIPE01) SCAN :

jnott/cicswsap/shelf/SCSCPJA6/PIPELINE/WSPIPE01

6.2 Using WD/z to generate WSDL

As part of the functionality in WD/z V7 for developing z/OS applications and Web
services are the Enterprise Service Tools for Web services and SOAP. Within
this functionality is the Web services for CICS wizard that provides the
functionality similar to that of the DFHLS2WS utility discussed in the previous
section.

The example we are going to use is to generate the business logic in program
ITSOCA03 using the COBOL copy book called ITSOCACD, which provides the
data structure for our business logic for Listing Corporate Acknowledgements.
 Chapter 6. Exposing our application as a Web service 123

Unlike our other data structures, this structure represents a CONTAINER rather
than a COMMAREA.

The following steps demonstrate the generation of wsdl and wsbind files from our
developed COBOL copy book data structure.

6.2.1 Importing the COBOL copy book

Use the following steps to import the copy book member from the z/OS remote
system into a local project in the Navigator view:

1. Verify that the Navigator view is open.

2. Use Window → Show View → Other, and expand General.

3. Select Navigator.

4. If you do not have a local project, create one using File → New → Project
and expand General.

5. Select Project.

6. Drag and drop or import the copybook from the PDS containing the member
in the Remote Systems view of the host into the local project.

6.2.2 Running the Web Services for CICS wizard

1. Right-click the copy book in the Navigator view, and select Enable
Enterprise Web Service.

This is shown in Figure 6-2 on page 125.

Tip: The copy book in the local project to be used by the Enterprise Service
Tools Wizard must have a file extension of .cbl, .cpy, .cob, or .ccp.

You can check that the file extension was mapped to your PDS low level
qualifier in the z/OS File System Mapping view, so that when the file is copied
across from PDS to the workstation project, it has the correct file extension.
z/OS File System Mapping was discussed in Chapter 5.
124 Developing Web Services Using CICS, WMQ, and WMB

Figure 6-2 Select the copy book to generate Web Service artifacts

2. This starts the Enterprise Service Tools wizard as in Figure 6-3 on page 126.
Check that the following are selected:

– Runtime: Web Services for CICS

– Scenario: Create New Service Interface (bottom-up)

– Conversion type: Interpretive XML conversion

Using the bottom-up scenario with Interpretive XML conversion generates
files to implement a Web service provider for the Web services CICS
environment. Interpretive XML conversion is supported only for the Web
services for CICS runtime environment.

3. Click Start. This starts up the Web Services for CICS wizard as in Figure 6-4
on page 127. This wizard performs functionality similar to that of the
DFHLS2WS utility in the CICS Web Services Assistant.
 Chapter 6. Exposing our application as a Web service 125

Figure 6-3 The Enterprise Service Tools Wizard Launchpad

4. On the Application properties tab, specify the following options (Figure 6-4 on
page 127):

– Program name: The name of the CICS application program that is to be
exposed as a Web service.

– Program Interface: Specifies that CICS passes data to the application
program by way of a channel, rather than a COMMAREA.

– Container name: Specifies the name of the container that holds the high
level data structure.
126 Developing Web Services Using CICS, WMQ, and WMB

Figure 6-4 Specify the CONTAINER name

5. On the Service Properties tab specify the following options, as seen in
Figure 6-5 on page 128.

– Inbound language structure: Specifies the high-level structure for the
Web service request—in this case it is CONTAINER-DATA.

– Outbound language structure: Specifies the high-level structure for the
Web service response—in this case it is CONTAINER-DATA.

– Service Location: Specifies the location of the Web service on the host.
 Chapter 6. Exposing our application as a Web service 127

Figure 6-5 Specify CONTAINER-DATA as the language structure

6. Click Next.

7. The panel displayed in Figure 6-6 on page 129 allows you to specify the
target names of the generated artifacts. By default the target location is the
local file system. You can also specify the remote UNIX System Services file
path name if you want to generate these directly into the remote host by
browsing the file container for the appropriate file.

We also specify that the target program communicates via a channel, and we
name the expected CONTAINER.

8. Click Next.
128 Developing Web Services Using CICS, WMQ, and WMB

Figure 6-6 WSBind and WSDL file target names

9. Click Finish.

The generated artifacts can now be seen in the Explorer view of the local project.

Figure 6-7 The generated Web service artifacts
 Chapter 6. Exposing our application as a Web service 129

6.2.3 Creating the CICS resources

We generated the Web service wsdl and bind files, which brings us to the same
point as having run the DFHLS2WS utility in section 6.1.3, “Generating the
WSBind and WSDL files” on page 119. In this example we wrote the generated
files to a local project on the workstation, so in order for CICS to dynamically
create the WEBSERVICE and URIMAP resources, we need to copy the .wsdl
and .wsbind files to our pickup directory for our PIPELINE in the UNIX System
Services HFS.

To do this we performed a drag and drop of the two files CorpAck.wsbind and
CorpAck.wsdl to the HFS directory: u/jnott/cicswsap/wsbind/provider.

Now we can scan the pipeline to dynamically create the CICS resources as we
did in section 6.1.5, “Performing a scan on the PIPELINE” on page 122, by
issuing the following CICS command:

CEMT PERFORM PIPELINE(EXPIPE01) SCAN

This command detects the new bindings file in the pickup directory, copies it to
the shelf directory for this CICS region, and dynamically creates the
WEBSERVICE and URIMAP resources.

6.3 Testing the Web service

Now that all of the resources are created in CICS, and the Web service bind files
and wsdl are generated, the service is ready to be tested. A simple way to
achieve this is by using the Web Services Explorer in WD/z. The only input
required is the wsdl file for the service.

From a previous step the wsdl was generated and saved in the HFS on the
remote host. The following steps show how we tested our sample GetHash.wsdl
Web service.

1. Import a copy of the wsdl file into a local project on your work space.

To do this:

a. Select File → Import.

b. In the Select panel, choose Other → Remote File System.

c. Click Next.

d. Browse for the location of the folder containing the wsdl.

e. In the Remote file system panel, select the wsdl to import. This is shown in
Figure 6-8 on page 131.
130 Developing Web Services Using CICS, WMQ, and WMB

Figure 6-8 Select the remote wsdl to import

f. Click Finish.

g. The imported files are now displayed in the local project.

2. Define the location of the Web service on the host.

Use the following steps to do this:

a. Select the GetHash.wsdl in the local project, and double-click to open up
the WSDL editor.

b. Choose the Design view of the wsdl object.

c. Click the Port for the service.

d. In the Properties pane, select the General tab, and enter the address of
the service. This is the URL of the remote host and the URL of the Web
service. This is shown in Figure 6-9 on page 132.
 Chapter 6. Exposing our application as a Web service 131

Figure 6-9 Use the WSDL Editor to specify location

3. Use the Web Services Explorer to test the Web service.

To start the Web Services Explorer, right-click the wsdl file, and select Web
Services → Test with Web Services Explorer. This opens a window that
has three panes in it as seen in Figure 6-10 on page 133:

– The Navigator pane shows a history of all previously tested WSDL files
and services. Bindings and operations can be viewed.

– The Actions pane is used to execute an operation or to change an
endpoint at runtime.

– The Status pane shows any output messages and SOAP envelopes
generated for the service.
132 Developing Web Services Using CICS, WMQ, and WMB

Figure 6-10 The Web Services Explorer in WD/z

To issue the Web service request for testing, click the Operation name
(ITSOGH03Operation), and the Action name expands to show the data
representation of the service you want to invoke. This is seen in Figure 6-11
on page 134.

The labels correspond to the names of the fields in the commarea. In our
example, our logic takes five address fields as input and returns three fields
as output. As we are using the same commarea and have not written a
wrapper to manipulate the request and response data, all the fields in the
commarea are displayed in the request and the response.
 Chapter 6. Exposing our application as a Web service 133

Figure 6-11 Enter the request specific data for the Web service on the Action pane

Enter some data to test, and click Go.

The result, including any error messages, appear in the Status pane as in
Figure 6-12 on page 135, showing the contents of the
ITSOGH03OperationResponse.
134 Developing Web Services Using CICS, WMQ, and WMB

Figure 6-12 The expected results of the Web service test

The test was successful!
 Chapter 6. Exposing our application as a Web service 135

136 Developing Web Services Using CICS, WMQ, and WMB

Chapter 7. Configuring
publication/subscription

In this chapter we configure the publication/subscription (pub/sub) facility of
WebSphere Message Broker V6, which provides an essential component of our
Change of Address application.

As you may not be familiar with WebSphere Message Broker, we start this
chapter with a brief overview of the functions and facilities of WebSphere
Message Broker V6. If you are familiar with this topic, you can skip straight to 7.2,
“Establishing the pub/sub environment” on page 165.

We chose to run pub/sub on our System z broker. This is not significantly
different from implementing the WMB pub/sub on any other platform, in fact, as
this chapter shows, we originally implemented the pub/sub message flow on
Windows and then ported to the System z broker, which was a trivial exercise.

7

© Copyright IBM Corp. 2007. All rights reserved. 159

7.1 Introduction to WebSphere Message Broker

WebSphere Message Broker (WMB) falls into the category of software known as
Application Integration or sometimes called middleware. Its purpose is to
integrate software components that may not otherwise communicate directly. An
example might be a proprietary accounting package on one side and a CICS
application on the other. WMB allows the reformatting of messages from one
system to be used by the other. Business rules can be applied to the data that is
flowing through the message broker in order to route, store, retrieve, transform,
and enrich the information.

7.1.1 Capabilities of WebSphere Message Broker

The primary capabilities of WebSphere Message Broker are message routing,
message transformation, message enrichment, and publish/subscribe. Together
these capabilities make WebSphere Message Broker a powerful tool for
business integration.

Message routing
WebSphere Message Broker provides connectivity for both standards based and
non-standards based applications and services. The routing can be simple
point-to-point routing or it can be based on matching the content of the message
to business rules defined to the broker.

WebSphere Message Broker contains a choice of transports that enable secure
business to be conducted at any time and any place, providing powerful
integration using mobile, telemetry, and Internet technologies. WebSphere
Message Broker is built upon WebSphere MQ and therefore supports the same
transports. However, it also extends the capabilities of WebSphere MQ by
adding support for other protocols, including real-time Internet, intranet, and
multicast endpoints.

WebSphere Message Broker supports the following transports:

� WebSphere MQ Enterprise Transport

� WebSphere MQ Web Services Transport

� WebSphere MQ Real-time Transport

� WebSphere MQ Multicast Transport

� WebSphere MQ Mobile Transport

� WebSphere MQ Telemetry Transport

� WebSphere Broker JMS Transport
160 Developing Web Services Using CICS, WMQ, and WMB

In addition to the supplied transports, the facility exists for users to write their own
input nodes to accept messages from other transports and formats as defined by
the user.

Message transformation and enrichment
Transformation and enrichment of in-flight messages is an important capability of
WebSphere Message Broker, and it allows for business integration without the
need for any additional logic in the applications themselves.

Messages can be transformed between applications to use different formats, for
example, transforming from a custom format in a traditional system to XML
messages that can be used with a Web service. This provides a powerful
mechanism to unify organizations because business information can now be
distributed to applications that handle completely different message formats
without a need to reprogram or add to the applications themselves.

Messages can also be transformed and enriched by integration with multiple
sources of data such as databases, applications, and files. This allows for any
type of data manipulation including logging, updating, and merging. For the
messages that flow through the broker, business information can be stored in
databases or can be extracted from databases and files and added to the
message for processing in the target applications.

Complex manipulation of message data can be performed using the facilities
provided in the Message Brokers Toolkit, such as ESQL and Java.

In WebSphere Message Broker, message transformation and enrichment
depends on a broker understanding the structure and content of the incoming
message. Self-defining messages, such as XML messages, contain information
about their own structure and format. However, before other messages, such as
custom format messages, can be transformed or enhanced, a message
definition of their structure must exist. The Message Brokers Toolkit contains
facilities for defining messages to the message broker. These facilities are
discussed in more detail in the following sections.

Publish/subscribe
The simplest way of routing messages is to use point-to-point messaging to send
messages directly from one application to another. Publish/subscribe provides
an alternative style of messaging in which messages are sent to all applications
that have subscribed to a particular topic.

The broker handles the distribution of messages between publishing applications
and subscribing applications. As well as applications publishing on or subscribing
to many topics, more sophisticated filtering mechanisms can be applied.
 Chapter 7. Configuring publication/subscription 161

An improved flow of information around the business is achieved through the use
of publish/subscribe and the related technology of multicast. These flexible
distribution mechanisms move away from hard-coded point-to-point links.

7.1.2 Components of WebSphere Message Broker

WebSphere Message Broker is comprised of the following two principle parts:

� A development environment for the creation of message flows, message sets,
and other message flow application resources.

� A runtime environment, which contains the components for running those
message flow applications that are created in the development environment.

Development environment
The development environment is where the message flow applications that
provide the logic to the broker are developed. The broker uses the logic in the
message flow applications to process messages from business applications at
run time. In the Message Brokers Toolkit, you can develop both message flows
and message sets for message flow applications.

Message flows
Message flows are programs that provide the logic that the broker uses to
process messages from business applications. Message flows are created by
connecting nodes together, with each node providing some basic logic. A
selection of built-in nodes is provided with WebSphere Message Broker for
performing particular tasks. These tasks can be combined to perform complex
manipulations and transformations of messages.

A choice of methods is available for defining the logic in the message flows to
transform data. Depending on the different types of data or the skills of the
message flow application developer, the following options are available:

� Extended Structured Query Language (ESQL)

� Java

� eXtensible Style sheet Language for Transformations (XSLT)

� Drag-and-drop mappings

The nodes in the message flows define the source and the target transports of
the message, any transformations and manipulations based on the business
data, and any interactions with other systems such as databases and files.

Message sets
A message set is a definition of the structure of the messages that are processed
by the message flows in the broker. As mentioned previously, in order for a
162 Developing Web Services Using CICS, WMQ, and WMB

message flow to be able to manipulate or transform a message, the broker must
know the structure of the message. The definition of a message can be used to
verify message structure and to assist with the construction of message flows
and mappings in the Message Brokers Toolkit.

Message sets are compiled for deployment to a broker as a message dictionary,
which provides a reference for the message flows to verify the structure of
messages as they flow through the broker.

Broker Application Development perspective
The Broker Application Development perspective is the part of the Message
Brokers Toolkit that is used to design and develop message flows and message
sets. It contains editors that create message flows, create transformation code
such as ESQL, and define messages.

Runtime environment
The runtime environment is the set of components that are required to deploy
and run message flow applications in the broker.

Broker
The broker is a set of application processes that host and run message flows.
When a message arrives at the broker from a business application, the broker
processes the message before passing it on to one or more business
applications. The broker routes, transforms, and manipulates messages
according to the logic that is defined in their message flow applications.

A broker uses WebSphere MQ as the transport mechanism both to communicate
with the Configuration Manager from which it receives configuration information
and to communicate with any other brokers to which it is associated.

Each broker has a database in which it stores the information that it needs to
process messages at run time.

Execution groups
Execution groups enable message flows within the broker to be grouped
together. Each broker contains a default execution group. Additional execution
groups can be created as long as they are given unique names within the broker.
Each execution group is a separate operating system process; therefore, the
contents of an execution group remain separate from the contents of other
execution groups within the same broker. This can be useful for isolating pieces
of information for security because the message flows execute in separate
address spaces or as unique processes.
 Chapter 7. Configuring publication/subscription 163

Message flow applications are deployed to a specific execution group. To
enhance performance, the same message flows and message sets can be
running in different execution groups.

Configuration Manager
The Configuration Manager is the interface between the Message Brokers
Toolkit and the brokers in the broker domain. The Configuration Manager stores
configuration details for the broker domain in an internal repository, providing a
central store for resources in the broker domain.

The Configuration Manager is responsible for deploying message flow
applications to the brokers. The Configuration Manager also reports back on the
progress of the deployment and on the status of the broker. When the Message
Brokers Toolkit connects to the Configuration Manager, the status of the brokers
in the domain is derived from the configuration information stored in the
Configuration Manager’s internal repository.

Broker domain
Brokers are grouped together in broker domains. The brokers in a single broker
domain share a common configuration that is defined in the Configuration
Manager. A broker domain contains one or more brokers and a single
Configuration Manager. It can also contain a User Name Server. The
components in a broker domain can exist on multiple machines and operating
systems and are connected together with WebSphere MQ channels.

A broker belongs to only one broker domain.

User Name Server
A User Name Server is an optional component that is required only when
publish/subscribe message flow applications are running and where extra
security is required for applications to be able to publish or subscribe to topics.
The User Name Server provides authentication for topic-level security for users
and groups that are performing publish/subscribe operations.

Broker Administration perspective
The Broker Administration perspective is the part of the Message Brokers Toolkit
that is used for the administration of any broker domains that are defined to the
Message Brokers Toolkit. This perspective is also used for the deployment of
message flows and message sets to brokers in the defined broker domains.

The Broker Administration perspective also contains tools for creating message
broker archive (bar) files. Bar files deploy message flow application resources
such as message flows and message sets.
164 Developing Web Services Using CICS, WMQ, and WMB

The Broker Administration perspective also contains tools to help test message
flows. These tools include Enqueue and Dequeue for putting and getting
messages from WebSphere MQ queues.

7.2 Establishing the pub/sub environment

The Change Of Address application is fundamentally a pub/sub application. As
address changes are made in the postal service database via option 3 -
“Add/Update Address”, notifications have to be made to all the interested parties.
To achieve this end, we use WebSphere Message Broker’s pub/sub capabilities.

We want to mention the existence of the WebSphere MQ Publish/Subscribe
facilities supplied as part of WebSphere MQ 5.3 fixpack 8 and above. We could
certainly have used this facility as a pub/sub engine; however, WebSphere MQ
Publish/Subscribe does not run on WMQ for z/OS. But apart from this, there is no
technical reason we could not use the WebSphere MQ Publish/Subscribe broker
by using another platform as the pub/sub engine.

It is straightforward to set up the pub/sub environment using the WMB Toolkit.

1. First, assuming your broker is up and running and the toolkit is connected,
make sure the Broker Administration perspective is showing. (Windows →
Open Perspective → Broker Administration perspective). See also the next
section on the broker environment for more details.

2. We created a single broker called AJGBRK1 on Windows.

3. Next we create a topic called CICSWSAP/AddressChange that identifies our
hash notification source. We open the pub/sub Topics window for this broker
by double-clicking the Topics in the Domain pane at the bottom left. The
toolkit now displays the topics for our broker.
 Chapter 7. Configuring publication/subscription 165

Figure 7-1 Create Topic 1

4. In the Create Topic dialogue that follows Figure 7-1, we enter our topic name:
CICSWSAP/AddressChange, and press Next.

The Principle Definition window now displays.

5. Since we are not too concerned about who has access to this information
(address hash publications are not decodable) we select the Public Group
group from the left pane and move it across to the right pane by pressing the
“>” button. Figure 7-2 on page 167 is the result.
166 Developing Web Services Using CICS, WMQ, and WMB

Figure 7-2 Create New Topic - Principle Definition

6. Press Finish.

Next, we need to add a subscription into the subscription table for every client
needing to be notified of the change of address. For our simple examples this is
just a handful, but in reality this could be hundreds of clients. To add a
subscription, WMB requires that we send a special format subscription message
to a dedicated broker queue called SYSTEM.BROKER.CONTROL.QUEUE. The
format of this message is described in the WMB Infocenter as follows:

The Register Subscriber command message is sent to a broker by a subscriber,
or by another application on behalf of a subscriber, to indicate that it wants to
subscribe to one or more topics at a subscription point. A message content filter
can also be specified.
 Chapter 7. Configuring publication/subscription 167

The Register Subscriber command message is an XML format message. For
convenience and clarity, we use the PubSub support in the IH03 SupportPac™ -
RFHUtil to create this message for us. (See the WMB Support site for a link to
the supportPacs.)

1. Open RFHUtil, and click the PubSub tab.

RFHUtil can construct the necessary XML command message and place the
message on the broker control queue for us, but we need to supply some
details about our subscription:

– Request type: Subscription

– Topic: CICSWSAP/AddressChange

– Filter: <none>

– Subscription Point/Stream: AddressChange

– Subscription Name: AddressChange

– Subscription Identity: Retrieve Address MsgFlow Example

– Subscription Queue Manager: AJGBRK1

– Subscription Queue: CICSWSAP.ADDRESS.CHANGE

– Options: Join Shared, Add Name

– Persistence: Persistent

The RFHUtil window looks similar to Figure 7-3 on page 169.
168 Developing Web Services Using CICS, WMQ, and WMB

Figure 7-3 Register a subscription with RFHUtil

2. We can verify that the subscription was accepted by querying the broker’s
subscriptions in the toolkit.

3. Return to the broker toolkit. If not already displayed, switch to the Broker
Administration perspective. Double-click the Subscriptions item in the
Domains pane at the lower left side. This opens the broker’s subscriptions.

4. By default, no filtering criteria are enforced. Click the Query button (circled in
Figure 7-4 on page 170) to retrieve the registered subscriptions.
 Chapter 7. Configuring publication/subscription 169

Figure 7-4 Query Subscriptions in the broker toolkit

It is a now simple matter of adding new subscriptions as required using the
RFHUtil.

Now, we create a simple WMB message flow to perform the message
publication. The UpdateAddress application in CICS writes a message to a WMQ
queue called CICSWSAP.PUBLICATION.QUEUE. Our simple publication
message flow needs to take this message and publish it in our topic. Next, we
deal with creating this message flow in WMB.

7.3 Creating the Hash Notification Message Set

Before the broker can perform any work on messages we choose to send it, we
need to tell it about the formats of these messages. We need the broker to be
able to handle the following two types of messages:

� Simple 12-character strings: the hash notifications

� The WSDL-defined Web-service messages for our GetHash and
RetrieveAddress CICS web-services

We need to create a Message Set project to contain these message definitions,
but it is best practice to separate different types of messages into separate
projects; therefore, we will create two Message Set projects: one for the hash
notification messages and another for the WSDL-defined messages. We cover
170 Developing Web Services Using CICS, WMQ, and WMB

the WSDL message set in section“Creating a Message Set from the
RetrieveAddress WSDL” on page 197.

1. Switch to the Broker Application Development perspective.

2. Select File → New → Message Set Project. We call our
CICSWSAPMQMsgSet, which reflects the origin of the message. Figure 7-5
appears:

Figure 7-5 Create a new Message Set Project

Creating the Message Set project also creates a Message Set. Here we get
to name the message set, and set Use Namespaces flag. We kept the
Message Set name the same as the Message Project name.
 Chapter 7. Configuring publication/subscription 171

Figure 7-6 defines the type of messages contained in this message set and in
theory the whole project. For the simple, 12-char string type messages, we
use the CWF format.

Figure 7-6 Set the Physical Format of the Message Set

3. Press finish to create the Message Set Project, the Message Set, and to open
the Message Set editor.

Figure 7-7 The Message Set editor

4. Next, we need to define the format of our simple, 12-char string format in this
message set. While this could be done manually, it is better to import a
language structure such as a COBOL CopyBook or C Structure and let the
WMB broker do the work. In our case, we have no structure defined for this
172 Developing Web Services Using CICS, WMQ, and WMB

message in our application. We just MQPUT a 12-char string onto
CICSWSAP.PUBLICATION.QUEUE. However, it is a trivial matter to create a
C structure to map this message. To do this we create a C header file in the
Broker toolkit under the CICSWSAPMQMsgSet project (File → New →
Other → Simple → File: MQFMT.h) This invokes a simple text editor window
into which we can place our C structure, as seen in Figure 7-8.

Figure 7-8 Define a C Header for the MQ Message Format

Save this file.

5. Now we must import this file into our CICSWSAPMQMsgSet message set.
We do this by creating a new Message Definition File
(New → Message Definition File).

Figure 7-9 Import the C Header file

6. Next, we must indicate the location of the C Header file, which is what we just
created, as shown in Figure 7-10 on page 174.
 Chapter 7. Configuring publication/subscription 173

Figure 7-10 Select the C Header file

7. Select the MQFMT in the source structure, then press the “>” button. Check
the MQFMT in the imported structures.

Figure 7-11 Complete the C header input

8. We chose to set the prefix for the structure to “gh”, which stands for GetHash,
which reflects the function that generated the hash code. We now click the
Finish button to complete the import.

At this point, we created a definition so that WMB can understand the content of
the message being taken from our publication queue. Next we must create very
simple Message Flow to do the actual publication to the
CICSWSAP/AddressChange topic.
174 Developing Web Services Using CICS, WMQ, and WMB

7.4 Creating the Publication Message Flow

As mentioned in the WMB overview, Message Flows are the way we program
WMB. Message flows are sequences of Nodes that perform functions, connected
together.

The message flow needs to be defined in a separate Message Flow project.
(File → New → Message Flow Project). We need to specify the dependencies
this project has on other projects that contain message definitions we require,
specifically the CICSWSAPMQMsgSet project.

Figure 7-12 Message Flow project references

Our publication message flow will be very straightforward. We simply need to
take a publication message of the CICSWSAP.PUBLICATION.QUEUE queue
and publish it. In order to publish the message, WMB first needs to be able to
understand the message. This is why we needed to create the
CICSWSAPMQMsgSet message set and import the structure. We used the
following message flow to perform our publication.
 Chapter 7. Configuring publication/subscription 175

We created the Message Flow project and now a Message Flow called
HashPublication. With this, the message flow editor opens with a blank canvas.

Figure 7-13 The Hash Publication Message Flow

Construction of this Message Flow is a simple matter of dropping the required
nodes onto the canvas, connecting the nodes, and renaming nodes as
appropriate. Of the three terminals of the MQInput node (Get Pub Msg), we have
the failure terminal connected to the Trace node named BadMQFormat. The
trace node is configured to write the message tree out to the local error log,
which is viewed using the EventVwr utility in Windows. This gives us a chance to
observe erroneous messages passed from the UpdateAddress CICS application.

The MQInput’s Out terminal is connected to the Publication node (Publish Hash).

The MQInput node has the basic properties shown in Figure 7-14 and the default
properties shown in Figure 7-15 on page 177.

Figure 7-14 MQInput Node - Basic Properties
176 Developing Web Services Using CICS, WMQ, and WMB

Figure 7-15 The MQInput node - Default Properties

Each of these properties are essential to the correct operation of the MQInput
node and subsequent publication of the message. We must tell the MQInput
node from what queue to take messages. We must indicate the message set that
tells WMB about the format of these messages. This format is the one we
created by importing the C header file containing the C structure. The other piece
of critical information is to define for what pub/sub topic this message is destined.

The Publication node contains just one configuration item—the Subscription
point.

Figure 7-16 The Publication node properties
 Chapter 7. Configuring publication/subscription 177

We deployed this message flow, together with the
CICSWSAPMQMsgSet—termed a dictionary in the broker archive (BAR) file.
Assuming required queues are defined, channels running and subscriptions
made, our pub/sub environment is now ready.

7.5 Testing the Publication Notification Message Flow

To test our pub/sub configuration, even without the presence of any actual
subscribers, we simply place a message on the
CICSWSAP.PUBLICATION.QUEUE, providing it is in the correct format. We
could then check the subscriber queue (for example,
CICSWSAP.ADDRESS.CHANGE) for the presence of the message. If the
message is not the expected format, a trace entry is placed in the local error log
indicating the error.

7.6 Porting the Publication Notification Message Flow to
System z Broker

No material changes are required to have the pub/sub message flow run on a
System z broker. Of course, the CICSWSAP/AddressChange publication needs
to be registered against the System z broker, which works exactly the same way
as the Windows broker.

Registering subscriptions is slightly different because we need to write to a
remote queue. Staying with RFHUtil, we have two options.

1. Use RFHUTILC - a WMQ Client version of RFHUTIL that is included in the
IH03 supportpac. This facilitates connecting to the System z WMQ manager
MQ8G as a WMQ client. We then write our subscription message to MQ6G’s
local SYSTEM.BROKER.CONTROL.QUEUE exactly the way we did for the
Windows broker.

2. Use RFHUTIL, specifying a remote queue. This requires that our local queue
manager AJGBRK1 has functioning channels to the System z queue
manager MQ8G. It is then just a case of specifying the remote parameters, as
shown in Figure 7-17 on page 179.
178 Developing Web Services Using CICS, WMQ, and WMB

Figure 7-17 Register a Subscription for the System z broker

Subscriptions now appear against the MQ8G broker, as shown in Figure 7-18 on
page 180.
 Chapter 7. Configuring publication/subscription 179

Figure 7-18 Subscriptions on MQ8GBRK
180 Developing Web Services Using CICS, WMQ, and WMB

Chapter 8. Developing Web service
clients

In this chapter we demonstrate how to create a number of different Web service
clients to perform the client side of our Change of Address application. These
range from the very simple—in the case of the WebSphere Application Server
client generated from WSDL using a wizard—to the more elaborate using
WebSphere Message Broker. In between, we show a client developed using
VBScript and the WebSphere MQ Client software.

Of course, these examples are not exhaustive. Virtually any software product
that can call a Web service and be invoked by a WMQ Client trigger is a suitable
candidate for this task. We also wanted to show that we do not limit the client
side of our application to a strict set of steps.

8

© Copyright IBM Corp. 2007. All rights reserved. 181

8.1 Using VB Script

VBScript (short form of Microsoft Visual Basic® Scripting Edition) is a scripting
language and is based on Microsoft’s Visual Basic. It can be executed as a
standalone application, or, as in our example, it can be embedded in a Web
page.

Here we present two scripts, the first to invoke a check for a change of address
and the second provides a report of all corporate clients who acknowledged
receipt of the change of address notification.

8.1.1 VBScript Retrieve Address Query

The intention was to demonstrate how a simple Web page, (with embedded
VBScript) could be used to implement our Query Change of Address Request.
We wanted to have a Web page with a command button that when clicked would
check WMQ for a change of address notification. If one existed it would retrieve
the data and then use the data to invoke the RetrieveAddress CICS Web service
to retrieve the new address details.

In order to run the application we required the following:

� IBM WebSphere MQ Client, which we downloaded from the following Web
address:

http://www.ibm.com/support/us/

� An HTML file containing the required VBScript code. The contents of this file,
RetAddr.html, are shown in Example 8-1 on page 184. This information is
also available in Appendix A, “Additional material” on page 249.

When the HTML file was displayed in a Web browser it gave the panel shown in
Figure 8-1 on page 183.
182 Developing Web Services Using CICS, WMQ, and WMB

http://www.ibm.com/support/us/

Figure 8-1 VBScript embedded in an HTML page to invoke Web service

8.1.2 VBScript code overview

When the Check button is clicked the cmdSubmit_OnClick subroutine is
invoked. The first call made by this code is to the MQGet function, which makes
the WMQ calls to check and retrieve any data from the relevant queue.

If data is returned from MQGet, the cmdSubmit_OnClick subroutine then uses
this data to build a Web service request to query the new address details. The
request is built based on the wsdl file generated from the DFHLS2WS invocation
for the ITSORA03 source.

Having received the new address details from the CICS Web services call, the
code parses it and displays the results in the corresponding fields on the Web
page.

It should be noted that the VBScript code is not particularly robust and makes
certain assumptions. We preferred taking this approach to writing a more robust
version that would detract from the core aspects that we are trying to
demonstrate.
 Chapter 8. Developing Web service clients 183

Example 8-1 Source code for RetAddr.htm

<HTML>
<HEAD>
<TITLE>Redbook Sample VBScript</TITLE>
<SCRIPT LANGUAGE="VBScript">
Option Explicit

Function MQGet()

' This function is loosly based on the sample, mqaxtriv.htm, provided with MQ client V6.
' It simply issues a get and if successful passes the data, a AddressHash value,
' back to the caller who in turn uses this to make a CICS Web Services call to get the
' Updated address.

Dim qm, Queue, q, qmanager

Dim gmsg ' message for getting
Dim gmo
Dim gs

Dim cr ' carriage return
 cr = chr(13)
 MQGet = ""

 on error resume next

 qmanager = "AJGBRK1"
 Set qm = MQAXSession.AccessQueueManager(qmanager)

 if err <> 0 then
 if err = 438 then
 msgbox "Cannot run example. Please check:" _
 & cr & " security settings (see text of this html page)" _
 & cr & " proper installation and registration of MQAX."
 elseif err = 32000 then
 msgbox "Cannot access WebSphere MQ queue manager:" _
 & cr & " " & MQAXSession.reasonName
 else
 msgbox "Unexpected error in MQGet " & err.description
 end if
 exit function
 end if

 ' access a standard queue that should be there
 Set q = qm.AccessQueue("CICSWSAP.ADDRESS.CHANGE.VBS", 16 or 1) ' MQOO_OUTPUT Or
MQOO_INPUT_AS_Q_DEF)

 Set gmsg = MQAXSession.AccessMessage()

 ' create a (default) MqGetMessageOptions object
 Set gmo = MQAXSession.AccessGetMessageOptions()

 ' do the get
 q.Get gmsg, gmo

 if err <> 0 then
 if MQAXSession.reasoncode = 2033 then
 ' msgbox "No item on queue:" & cr & " " & MQAXSession.reasonName
 else
 msgbox "Unexpected error in MQGet Function " & err.description
 end if
 exit function
 end if
184 Developing Web Services Using CICS, WMQ, and WMB

 ' now read the data from the input message
 gs = gmsg.ReadString(gmsg.MessageLength)

 MQGet = gs

End Function

Sub cmdSubmit_OnClick
Dim Hash
Dim pos, pos2, StartTag, EndTag
Dim xmlhttp, strRequestFilePath, strURI, xmlRequest, strRequest

Const conHostName = "WTSC66.ITSO.IBM.COM"
Const conPortNumber = "8012"
Const conWebServicePath = "cicswsap/RetrieveAddress"

 document.frmExample5a.txtFirstName.value = " "
 document.frmExample5a.txtMiddleName.value = " "
 document.frmExample5a.txtAddressLine1.value = " "
 document.frmExample5a.txtAddressLine2.value = " "
 document.frmExample5a.txtSuburb.value = " "
 document.frmExample5a.txtState.value = " "
 document.frmExample5a.txtPostcode.value = " "

 ' See if there is an AddressHash value on the queue.
 Hash = MQGet()
 If Hash = "" Then
 MsgBox "No item on queue"
 Exit Sub
 End If

 ' We have a AddressHash value to invoke web service to get address.
 ' Create the object that will send the API request and received the API response
 Set xmlhttp = CreateObject("Microsoft.XMLHTTP")

 ' Set up the URL to the CICS server
 strURI = "http://" & conHostName & ":" & conPortNumber & "/" & conWebServicePath

 ' Initialize the HTTP request
 xmlhttp.open "POST", strURI, False

 ' Create the request header

 xmlhttp.setRequestHeader "Content-Type", "text/xml; charset=""UTF-8"""
 xmlhttp.setRequestHeader "Host", conHostName & ":" & conPortNumber
 xmlhttp.setRequestHeader "Connection", "Keep-Alive"

 ' In theory having retrieved a AddressHash value the application should look this up
 ' on a 'local' database to retrieve the corresponding name. For simplicity
 ' at this point we will just hard code the name.

 ' Send the request to the Web service

 strRequest = "<?xml version=""1.0"" encoding=""UTF-8"" ?>" _
 & "<SOAP-ENV:Envelope xmlns:SOAP-ENV=""http://schemas.xmlsoap.org/soap/envelope/"">" _
 & "<SOAP-ENV:Header SOAP-ENV:mustUnderstand=""no""/>" _
 & " <SOAP-ENV:Body> " _
 & " <ITSORA03Operation> " _
 & " <raca> " _
 & " <FirstName>ADRIAN</FirstName> " _
 & " <MiddleName></MiddleName> " _
 & " <LastName>SIMCOCK</LastName> " _
 Chapter 8. Developing Web service clients 185

 & " <AddressLine1></AddressLine1> " _
 & " <AddressLine2></AddressLine2> " _
 & " <Suburb></Suburb> " _
 & " <State></State> " _
 & " <Postcode></Postcode> " _
 & " <AddressHash>" & Hash & "</AddressHash> " _
 & " <ClientId>1</ClientId> " _
 & " <NameRef>4</NameRef> " _
 & " <rc>0</rc> " _
 & " <reason> </reason> " _
 & " </raca> " _
 & " </ITSORA03Operation> " _
 & " </SOAP-ENV:Body> " _
 & " </SOAP-ENV:Envelope> "

 xmlhttp.send strRequest

 If Err.Number Then
 MsgBox "Could not send command. CICS region might be down.", vbExclamation
 Else
 ' In theory we now have the response data from CICS so we will parse it up
 ' and display it to the user.

 StartTag = "<FirstName>"
 EndTag = "</FirstName>"
 pos = Instr(xmlhttp.responseText,StartTag)
 if pos > 0 then
 pos2 = Instr(xmlhttp.responseText,EndTag)
 document.frmExample5a.txtFirstName.value =
mid(xmlhttp.responseText,pos+Len(StartTag),(pos2-(pos+Len(StartTag))))
 End if

 StartTag = "<MiddleName>"
 EndTag = "</MiddleName>"
 pos = Instr(xmlhttp.responseText,StartTag)
 if pos > 0 then
 pos2 = Instr(xmlhttp.responseText,EndTag)
 document.frmExample5a.txtMiddleName.value =
mid(xmlhttp.responseText,pos+Len(StartTag),(pos2-(pos+Len(StartTag))))
 End if

 StartTag = "<LastName>"
 EndTag = "</LastName>"
 pos = Instr(xmlhttp.responseText,StartTag)
 if pos > 0 then
 pos2 = Instr(xmlhttp.responseText,EndTag)
 document.frmExample5a.txtLastName.value =
mid(xmlhttp.responseText,pos+Len(StartTag),(pos2-(pos+Len(StartTag))))
 End if

 StartTag = "<AddressLine1>"
 EndTag = "</AddressLine1>"
 pos = Instr(xmlhttp.responseText,StartTag)
 if pos > 0 then
 pos2 = Instr(xmlhttp.responseText,EndTag)
 document.frmExample5a.txtAddressLine1.value =
mid(xmlhttp.responseText,pos+Len(StartTag),(pos2-(pos+Len(StartTag))))
 End if

 StartTag = "<AddressLine2>"
 EndTag = "</AddressLine2>"
 pos = Instr(xmlhttp.responseText,StartTag)
 if pos > 0 then
 pos2 = Instr(xmlhttp.responseText,EndTag)
186 Developing Web Services Using CICS, WMQ, and WMB

 document.frmExample5a.txtAddressLine2.value =
mid(xmlhttp.responseText,pos+Len(StartTag),(pos2-(pos+Len(StartTag))))
 End if

 StartTag = "<Suburb>"
 EndTag = "</Suburb>"
 pos = Instr(xmlhttp.responseText,StartTag)
 if pos > 0 then
 pos2 = Instr(xmlhttp.responseText,EndTag)
 document.frmExample5a.txtSuburb.value =
mid(xmlhttp.responseText,pos+Len(StartTag),(pos2-(pos+Len(StartTag))))
 End if

 StartTag = "<State>"
 EndTag = "</State>"
 pos = Instr(xmlhttp.responseText,StartTag)
 if pos > 0 then
 pos2 = Instr(xmlhttp.responseText,EndTag)
 document.frmExample5a.txtState.value =
mid(xmlhttp.responseText,pos+Len(StartTag),(pos2-(pos+Len(StartTag))))
 End if

 StartTag = "<Postcode>"
 EndTag = "</Postcode>"
 pos = Instr(xmlhttp.responseText,StartTag)
 if pos > 0 then
 pos2 = Instr(xmlhttp.responseText,EndTag)
 document.frmExample5a.txtPostcode.value =
mid(xmlhttp.responseText,pos+Len(StartTag),(pos2-(pos+Len(StartTag))))
 End if
 End If
End Sub
</SCRIPT>
</HEAD>
<BODY>
<!-- my test Mq object (guid for MQAXSessionession) -->
<OBJECT

classid="clsid:00290471-B893-11CF-A5F7-444553540000"
id=MQAXSession

>
</OBJECT>
<p>

<H1>Check For Address Notification Change</H1>

<FORM NAME="frmExample5a">
 <TABLE>

 <TR>
 <TD>First Name:</TD>
 <TD><INPUT TYPE="Text" NAME="txtFirstName" SIZE="20" disabled></TD>
 </TR>
 <TR>
 <TD>Middle Name:</TD>
 <TD><INPUT TYPE="Text" NAME="txtMiddleName" SIZE="20" disabled></TD>
 </TR>
 <TR>
 <TD>Last Name:</TD>
 <TD><INPUT TYPE="Text" NAME="txtLastName" SIZE="20" disabled></TD>
 </TR>
 <TR>
 <TD>Address Line 1:</TD>
 <TD><INPUT TYPE="Text" NAME="txtAddressLine1" SIZE="50" disabled></TD>
 </TR>
 <TR>
 Chapter 8. Developing Web service clients 187

 <TD>Address Line 2:</TD>
 <TD><INPUT TYPE="Text" NAME="txtAddressLine2" SIZE="50" disabled></TD>
 </TR>
 <TR>
 <TD>Suburb:</TD>
 <TD><INPUT TYPE="Text" NAME="txtSuburb" SIZE="20" disabled></TD>
 </TR>
 <TR>
 <TD>State:</TD>
 <TD><INPUT TYPE="Text" NAME="txtState" SIZE="20" disabled></TD>
 </TR>
 <TR>
 <TD>Postcode:</TD>
 <TD><INPUT TYPE="Text" NAME="txtPostcode" SIZE="20" disabled></TD>
 </TR>
 <TR>
 <TD><INPUT TYPE="Button" NAME="cmdSubmit" VALUE="Check"</TD>
 <TD></TD>
 </TR>
 </TABLE>
 </FORM>
</BODY>
</HTML>

8.1.3 VBScript Corporate Acknowledgement Query

This second VBScript runs in much the same was as the first. This time we call
the Corporate Acknowledgements CICS Web service to retrieve the audit
records of all the corporate clients who received the change of address
notification and then retrieved the new address. Although this does not
guarantee that the external client successfully updated their customer database,
it is a close approximation.

Unlike the rest of the CICSWSAP application suite, the ITSOCA03 code is
CICS/DB2 COBOL. This difference presents no difficulties either in Web service
generation or invocation. In keeping with the Web service philosophy, the client
side has no knowledge of the implementation details of the server side. So this
makes no difference.
188 Developing Web Services Using CICS, WMQ, and WMB

Figure 8-2 List Corporate Acknowledgements
 Chapter 8. Developing Web service clients 189

8.2 Generating a Java Client using WAS

This section demonstrates the use of WebSphere Developer for System z
(WD/z) to generate a Web service client and run it in an application server. WD/z
generates all the required Java classes to create a Web service request and to
receive a Web service response. It also builds a very basic graphical user
interface to interact with those classes. RAD users will be able to take advantage
of this facility as the wizard is part of the RAD Web service features. As WD/z is
built on RAD, this facility is also available under WD/z.

For this example, we generate a client to invoke the GetHash Web service. The
only input required is the GetHash.wsdl.

Import the wsdl
The wsdl needs to be in the WD/z work space. If you do not already have a local
copy of the wsdl, import the wsdl using File → Import, and then select the import
source. Follow the wizard to complete the import.

Start the application server
Start the server before we start to generate the Web client using the wizard
because it can take several minutes to start the WebSphere Application Server.

To start the server, select it in the Servers view. Go to Window → Show View →
Other, and select Server → Servers, and click OK. This is seen in Figure 8-3 on
page 191.

Note: WebSphere Application Server v6.1 comes bundled as an optional
product in IBM Rational Application Developer V7 or RAD V7, which is a
pre-requisite for running Web service clients under WD/z or RAD.
190 Developing Web Services Using CICS, WMQ, and WMB

Figure 8-3 Select the Server view

In the Servers view, right-click the server name, and select Start. This begins the
server startup, and progress can be seen in the console view that is dynamically
opened. The server view shows the status as in Figure 8-4.

Figure 8-4 The Server view showing startup
 Chapter 8. Developing Web service clients 191

A successful startup of the server will show a State of Started and a Status of
Synchronized. The Console view shows the following message:

WSVR0001I: Server server1 open for e-business

Generate the client
We are now going to generate a proxy client to test the Web service.

1. Right-click the wsdl file in the Project explorer view.

2. Select Web Services → Generate Client.

This displays the Web services wizard. There is much richer functionality here
than just generating a test client. The slide bar allows you to select the stages
of Web service client development. The wizard will take you through the
stages Develop - Assemble - Deploy - Install - Test.

We are only interested in testing the Web service using a proxy Java client,
so slide the bar to the Test position, as shown in Figure 8-5.

There are also options in the Configuration section of the panel in Figure 8-5
to select the server, runtime, and to change the Web service project name
and Web service EAR name that are auto-generated. Because this is just a
unit test we left the default of WebServiceProject and
WebServiceProjectEAR.

Figure 8-5 Web Services wizard
192 Developing Web Services Using CICS, WMQ, and WMB

a. Select Next.

b. On the Web Service Proxy page, select Next.

c. The Web Service Client test page in Figure 8-6 shows all the methods that
were generated for the client. Ensure that the following boxes are checked:

• Test the generated proxy

• Run test on server

d. Click Finish.

Figure 8-6 Web Service Client Test

3. The Wizard then opens up a Web browser in the work space in which the
methods that were created are listed and can be tested. Figure 8-7 on
page 194 shows the method that we are testing is ITSOGH03Operation.
 Chapter 8. Developing Web service clients 193

Figure 8-7 Testing the Proxy Client

4. Fill in some values, and click Invoke.

The result is seen in Figure 8-8 on page 195.
194 Developing Web Services Using CICS, WMQ, and WMB

Figure 8-8 Successful Test Result

This test was successful!
 Chapter 8. Developing Web service clients 195

8.3 A client developed in WebSphere Message Broker

In this section we discuss how we can create a message flow using WebSphere
Message Broker V6.0 to perform the client side of our Change of Address
application.

WebSphere Message Broker (WMB) is ideally suited to this client task as it is by
nature an asynchronous subsystem. WMB allows easy facilitation of the Web
service calls via native HTTPRequest nodes and the new ability to import WSDL
files as message definition files.

WMB is much too large a topic to be introduced at more than a superficial level
here. We briefly introduced WebSphere Message Broker in Chapter 7,
“Configuring publication/subscription” on page 159. For further information, refer
to the WebSphere Message Broker Basics, SG24-7137 IBM Redbooks
publication for an introduction to the broker. However, the level of complexity of
this message flow is basic, so the reader should have little difficulty following the
logic of this approach.

8.3.1 Creating the RetrieveAddressWeb Message Flow

The RetrieveAddress message flow should perform the following tasks:

� Retrieve an address hash from a subscription queue.

� Check the local customer database for any clients whose address matches
this address hash.

� Invoke the StandardName Web service for each name returned to obtain the
standard format of this entity.

� Call the RetrieveAddress CICS Web service for each matching client,
supplying the standard-name of the client and the address hash.

� Update the local customer database with the changed address, if
RetrieveAddress returns a new address for client.

The Customer database
The Customer database can be just about any type of data repository required,
but in most cases, this will be a database. But it could just as well be a
spreadsheet or a VSAM dataset on a mainframe. In this implementation, the
database is a DB2 table on Windows. For simplicity, we created a single, linear
table to hold our customer data. It looks similar to Figure 8-9 on page 197.
196 Developing Web Services Using CICS, WMQ, and WMB

Figure 8-9 The Customer database table format

Now since the RetrieveAddress Web service returns no information about the
identity of the user for which it publishes a hash, we must already have clients in
the Customer database table, together with hash values of their current
addresses. This could be done using DB2 Control Center’s spreadsheet-like
graphical input or some simple SQL INSERTS—which is what is more likely to
happen in a real business situation. The Hash code is returned by a call to the
GetHash CICS Web service. We created the following entries in our Customer
database table with these hash codes (not shown).

Figure 8-10 Sample contents of the Customer database table

Creating a Message Set from the RetrieveAddress WSDL
Just as we created a message set in the broker by importing a C Header
structure, we now create a message set for the call to the RetrieveAddress
message set.

1. Create a new Message Set project. As previously mentioned, it is best
practice to separate different classes of messages. We call both the Message
Set project and Message Set CICSWSAPWSDLMsgSet. The physical format
will be XML because WSDL is an XML schema.
 Chapter 8. Developing Web service clients 197

2. Import the WSDL file into the work space before creating a Message
Definition file from it. (File → Import → File System.)

3. Locate the RetrieveAddress.wsdl file and import it into the
CICSWSAPWSDLMsgSet project.

Figure 8-11 Import the RetrieveAddress WSDL file

4. Create the Message Definition, by selecting File → New → Message
Definition File, and then choose: WSDL File.

5. Locate the WSDL file in the CICSWSAPWSDLMsgSet project.
198 Developing Web Services Using CICS, WMQ, and WMB

Figure 8-12 Locate the WSDL file

6. Click Next. We are asked what Message set in which we want to save the
definition. Choose CICSWSAPWSDLMsgSet, and click Next. We take the
default on WSDL Warnings and leave the NameSpaces as is. Take defaults
until the message definition file is created.
 Chapter 8. Developing Web service clients 199

Constructing the RetrieveAddress Message Flow
Our RetrieveAddress message flow looks similar to Figure 8-13.

Figure 8-13 The RetrieveAddress message flow

Most of the nodes in this message flow are Trace nodes, which are essentially
there to help with run-time errors. They are all configured to write to the Local
Error Log. For example the Query Failed node looks similar to Figure 8-14 on
page 201.
200 Developing Web Services Using CICS, WMQ, and WMB

Figure 8-14 A typical Trace node

Ignoring error conditions for now, the Message Flow commences with the receipt
of a published hash onto our subscription queue. Our queue name was indicated
on our subscription request and matches the value on the MQInput node.

Figure 8-15 The subscription queue on the MQInput node
 Chapter 8. Developing Web service clients 201

Essential information about the structure of the message is indicated in the
Default tab.

Figure 8-16 The Message format data

So, at this stage, the MQInput node knows what queue it takes messages from
and also understands the format of the message. The parsed message tree is
passed to the next node, which is a query to our local Customer database table
to see if we have any clients with a matching hash key. The Database node
needs to know what database it is using.

Figure 8-17 The Database Node properties

In this case, our database is called UWC (Unified Widget Corporation), which
contains just one user table called Customer. The Statement field indicates the
name of an ESQL module containing the database query, which is follows in
Figure 8-18 on page 203.
202 Developing Web Services Using CICS, WMQ, and WMB

Figure 8-18 The query

This ESQL places the result of the query in the Environment branch of the parse
tree where this result will be available to subsequent nodes.

The next significant node in the message flow is a Compute node, which
constructs the call to the RetrieveAddress Web service. It takes the results of the
above ESQL query and places the first, middle, and last names, as well as the
hash value, into the Web service call parameter structure.
 Chapter 8. Developing Web service clients 203

Figure 8-19 Setting up the call to the RetrieveAddress Web service

The output of this node is now suitable for the following node, the actual call to
the Web service via the HTTPRequest node. Essential information about this
node includes the following:

– The actual URL of the Web service
– Transport properties like whether SSL is in use
– The names of the message sets, so we can interpret the results of the

Web service call and parse the results ready for the next node
204 Developing Web Services Using CICS, WMQ, and WMB

Figure 8-20 The HTTPRequest node properties - 1

Figure 8-21 The HTTPRequest node properties - 2

The next Compute node in the sequence simply checks the success or otherwise
of the Web service call and sets an indicator for the next node: the
RouteToLabel, depending on the error condition. If successful, the next
significant node is the UpdateCustomer Database node. Here, we attempt to
update the client record in the local DB2 table with the results of the
RetrieveAddress Web service call. The properties of this node indicate the
database being targeted: UWC. This node contains ESQL to perform the update.
 Chapter 8. Developing Web service clients 205

Figure 8-22 Updating the local Customer database

And with the success of this update, the message flow fulfilled it’s purpose.

Testing the RetrieveAddress Message Flow
We can now perform an end-to-end test of the AddressChange message flow
presuming everything described so far is in place. It should now just be a case of
updating one of the known customer’s address details on the CICS application
(Option 3). This generates the hash, which is published by our Hash Publication
message flow. All registered subscribers, including our RetrieveAddress
message flow receive this message. If the message flow runs through to
successful completion, we expect to see a message logged indicating the
success, as well as an update to our Customer database table.

1. First, we update the address of Thomas J. Watson.
206 Developing Web Services Using CICS, WMQ, and WMB

Figure 8-23 Change Thomas J Watson’s address

Figure 8-24 Update confirmed
 Chapter 8. Developing Web service clients 207

2. Look at the Windows Event Viewer for evidence of the success or otherwise
of the update on the client side.

Example 8-2 An error log event indicating success of the update

The description for Event ID (19003) in Source (WebSphere Broker v6002) could not be found.
It contains the following insertion string(s): .
AJGBROKER1.WSTest
'
Success !!

(
 (0x01000000):Properties = (
 (0x03000000):MessageSet = 'L849NPS002001'
 (0x03000000):MessageType = 'Envelope'
 (0x03000000):MessageFormat = 'XML1'
 (0x03000000):Encoding = 546
 (0x03000000):CodedCharSetId = 1208
 (0x03000000):Transactional = FALSE
 (0x03000000):Persistence = FALSE
 (0x03000000):CreationTime = GMTTIMESTAMP '2007-02-14 09:42:03.607'
 (0x03000000):ExpirationTime = -1
 (0x03000000):Priority = 0
 (0x03000000):ReplyIdentifier = X'00'
 (0x03000000):ReplyProtocol = 'MQ'
 (0x03000000):Topic = NULL
 (0x03000000):ContentType = 'text/xml; charset="UTF-8"'
)
 (0x01000000):HTTPResponseHeader = (
 (0x03000000):X-Original-HTTP-Status-Line = 'HTTP/1.0 200 OK'
 (0x03000000):X-Original-HTTP-Status-Code = 200
 (0x03000000):Server = 'IBM_CICS_Transaction_Server/3.1.0(zOS)'
 (0x03000000):Date = 'Thu, 15 Feb 2007 00:21:05 GMT'
 (0x03000000):Content-Length = '00001293'
 (0x03000000):Content-Type = 'text/xml; charset="UTF-8"'
)
 (0x0100001B):MRM = (
 (0x01000013)http://schemas.xmlsoap.org/soap/envelope/:Body = (
 (0x0100001B)http://www.ITSORA03.ITSORACA.Response.com:ITSORA03OperationResponse = (
 (0x01000013)http://www.ITSORA03.ITSORACA.Response.com:raca = (
 (0x0300000B)http://www.ITSORA03.ITSORACA.Response.com:FirstName = 'Thomas
 (0x0300000B)http://www.ITSORA03.ITSORACA.Response.com:MiddleName = 'J '
 (0x0300000B)http://www.ITSORA03.ITSORACA.Response.com:LastName = 'Watson '
 (0x0300000B)http://www.ITSORA03.ITSORACA.Response.com:AddressLine1 = 'IBM Peru '
 (0x0300000B)http://www.ITSORA03.ITSORACA.Response.com:AddressLine2 = '1 Real Inca '
 (0x0300000B)http://www.ITSORA03.ITSORACA.Response.com:Suburb = 'Lima '
 (0x0300000B)http://www.ITSORA03.ITSORACA.Response.com:State = 'Lima '
 (0x0300000B)http://www.ITSORA03.ITSORACA.Response.com:Postcode = '11111 '
 (0x0300000B)http://www.ITSORA03.ITSORACA.Response.com:AddressHash = 365336036
208 Developing Web Services Using CICS, WMQ, and WMB

 (0x0300000B)http://www.ITSORA03.ITSORACA.Response.com:ClientId = 1
 (0x0300000B)http://www.ITSORA03.ITSORACA.Response.com:NameRef = 0
 (0x0300000B)http://www.ITSORA03.ITSORACA.Response.com:rc = 0
 (0x0300000B)http://www.ITSORA03.ITSORACA.Response.com:reason = 'OK, new address
details supplied'
)
)
)
)
)
'
RetrieveAddressWithDB.Log Success

3. Ensure that the Customer database table update occurred. A simple SQL
query will suffice, similar to Example 8-3:

Example 8-3 Querying the CUSTOMER database

db2 => select * from CUSTOMER where LASTNAME='Watson'

CUSTID FIRSTNAME MIDDLENAME LASTNAME
 ADDRESS1 ADDRESS2 SUBURB
STATE
 POSTCODE HASH
-------------------- -------------------- --------------------

--- -------------------- -------------------- --------------------

------- ---------- --------------------
 1 Thomas J Watson
 IBM Peru 1 Real Inca Lima Lima
 11111 365336036

 1 record(s) selected.

The message flow performed its designated task.
 Chapter 8. Developing Web service clients 209

Running the message flow on a System z Broker
Although this message flow was developed on Windows, we tested it on a
System z WebSphere Message Broker. We chose to run a cut-down version of
the message flow, leaving out the database nodes. This was purely due to time
constraints.

We discovered a couple of changes were necessary. When we first tried to run
the message flow, we could see no trace node output. Clearly Local Error Log is
not appropriate as a destination for System z broker trace nodes. We changed
this to File with /var/wmqi/MQ8GBRK/output/RetrieveAddress.log as the
destination.

Secondly, out RetrieveAddress Web service call failed with the diagnostic in
Example 8-4:

Example 8-4 Error in RetrieveAddress Web service call

Error during RetrieveAddress WS call:.
.
(
 (0x01000000):Properties = (
 (0x03000000):MessageSet = 'CICSWSAPWSDLMsgSet (L849NPS002001)'
 (0x03000000):MessageType = 'Envelope'
 (0x03000000):MessageFormat = 'XML1'
 (0x03000000):Encoding = 546
 (0x03000000):CodedCharSetId = 1208
 (0x03000000):Transactional = FALSE
 (0x03000000):Persistence = FALSE
 (0x03000000):CreationTime = GMTTIMESTAMP '2007-02-17 05:00:04.135811'
 (0x03000000):ExpirationTime = -1
 (0x03000000):Priority = 0
 (0x03000000):ReplyIdentifier =X'00’
 (0x03000000):ReplyProtocol = 'MQ'
 (0x03000000):Topic = NULL
 (0x03000000):ContentType = 'text/xml; charset="UTF-8"'
)
 (0x01000000):HTTPResponseHeader = (
 (0x03000000):X-Original-HTTP-Status-Line = 'HTTP/1.0 500 Internal Server
Error'
 (0x03000000):X-Original-HTTP-Status-Code = 500
 (0x03000000):Server = 'IBM_CICS_Transaction_Server/3.1.
 (0x03000000):Date = 'Sat, 17 Feb 2007 05:02:12 GMT'
 (0x03000000):Content-Length = '00000516'
 (0x03000000):Content-Type = 'text/xml; charset="UTF-8"'
)
 (0x01000000):BLOB = (
 (0x03000000):UnknownParserName = ''
210 Developing Web Services Using CICS, WMQ, and WMB

 (0x03000000):BLOB =
X'3c534f41502d454e563a456e76656c6f706520786....
)
)

We reasoned that the only difference between the Windows and System z
platform was the code-page and encoding schemes. We added two lines at the
start of the our ESQL on the Setup WS Call compute node to set the
CodedCharacterSet and Encoding values as suggested by the trace output
above.

This change worked as we wanted. Figure 8-25 shows the modified ESQL:

Figure 8-25 The modified ESQL

Possible improvements
� Usually more than one person lives at an address. This sample message flow

needs to be able to handle multiple clients with same address hash.

� Use HTTPS on the RetrieveAddress Web service call to secure possibly
personal information
 Chapter 8. Developing Web service clients 211

� Message flow should invoke the StandardName Web service before the
RetrieveAddress Web service. These are currently dummy functions. See the
discussion on StandardName and StandardAddress in Chapter 5.
212 Developing Web Services Using CICS, WMQ, and WMB

Chapter 9. Tracing the Change of
Address scenario

In this chapter we take a low-level look at the processes and interactions of the
complete Change of Address scenario. We take simultaneous, detailed traces in
CICS and both the System z broker and the Windows broker. These traces are
interleaved to show the processing happening in each component as a time
sequence with annotations.

We include detailed instructions for collecting this type of trace information.

9

© Copyright IBM Corp. 2007. All rights reserved. 213

9.1 Collecting the traces

The Change of Address scenario is probably the most complex of the various
application scenarios as it involves at least three components across two
platforms:

1. CICS on System z

– Acts as the service provider

– Runs the ‘back end’ program

– Interacts with DB2 on System z

– Writes a message to a WebSphere MQ queue

2. WebSphere Message Broker on System z

– A message flow detects a message from CICS

– WMB publishes this message to subscriber message queues

3. WebSphere Message Broker on Windows

– A message flow detects a message from WMB on its subscription queue

– Initiates a Web service call in CICS for retrieval of information

We say at least three components because we choose not to trace WebSphere
MQ flows, as these are fairly straightforward and well indicated in the
WebSphere Message Broker and CICS traces. We recommend tracing WMQ if
suspected problems with messaging existed.

9.1.1 Tracing the Web service on CICS

The tool of choice for tracing CICS transactions is the Auxiliary trace. The
auxtrace is highly configurable and simple to use. To start and configure the
CICS auxtrace, use the CICS Trace Control Facility. This is provided with the
CETR transaction. Figure 9-1 on page 215 shows the options we used to start
the trace.
214 Developing Web Services Using CICS, WMQ, and WMB

Figure 9-1 CETR Transaction

The relevant options in CETR are as follows:

Auxiliary Trace Status - Over-type the choice to start or stop the trace.

Auxiliary Trace Dataset - here the dataset is specified. There are two
auxiliary trace datasets that CICS uses. They are defined and created using
the job DEFTRCDS with the DD names DFHAUXT for the ‘A’ dataset and
DFHBUXT for the ‘B’ dataset.

Auxiliary Switch Status - specifies whether CICS should switch to the other
dataset when the current becomes full.

You can filter certain CICS component trace points. As we are interested in CICS
Web services, we chose to specify special tracing for the CICS Domains: EI
(Exec Interface), WB (Web) and PI (Pipeline Manager). Use the following steps
to achieve this:

1. In CETR, select PF4=Components.

Tip: As CICS can generate masses of trace data, only Start the trace when
you are ready to begin the transaction being traced. Likewise, Stop the
trace as soon as practical after the transaction or operation has finished.
 Chapter 9. Tracing the Change of Address scenario 215

2. Specify a trace level of two for each of the components EI, WB and PI by
over-typing the ‘1’ in the Standard column with ‘2’.

3. Press ENTER=Change to save, and then PF3=Quit.

Formatting the Trace
After the tracing stops, use the DFHTU640 utility to extract all or selected trace
entries and to format the data. We used the job in Example 9-1 to format our
data. We use the TYPETR option to extract trace entries that we are interested
in, and we also specify ABBREV to extract abbreviated, one line for each trace
entries.

Example 9-1 The Trace Utility program DFHTU640

//ITSOAUXT JOB ,CCOMP,CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID,REGION=4M
//*
//* CICS AUX TRACE
//*
//PRINT EXEC PGM=DFHTU640
//STEPLIB DD DSN=CICSTS31.CICS.SDFHLOAD,DISP=SHR
//DFHAUXT DD DSN=CICSSYSF.CICS640.PJA6.DFHAUXT,DISP=SHR
//DFHAXPRT DD SYSOUT=*
//DFHAXPRM DD *
ABBREV
TYPETR=(DS0000-FFFF,AP0000-FFFF,XM0000-FFFF,WB0000-FFFF,PI0000-FFFF)

9.1.2 Tracing the Message Broker flow on distributed platforms

Collecting a user trace for the WebSphere Message Broker on distributed
platforms including Windows follows this set of commands:

1. To start the trace:
mqsichangetrace <Broker-Name> -u -e <EG-name> -l <level>

2. To stop the trace:
mqsichangetrace <Broker-Name> -u -e <EG-name> -l none

3. To extract the trace data:
mqsireadlog <Broker-name> -u -e <EG-name> -o <trace-data.xml>

4. To format the trace data:
mqsiformatlog -i <trace-data.xml> -o <trace-data.txt>

For this particular trace we use the User Trace menu option in the broker toolkit
to set the broker trace levels. Do this from the Broker Administration perspective
in the Domains pane.
216 Developing Web Services Using CICS, WMQ, and WMB

Figure 9-2 Setting the trace level in the broker toolkit

This is equivalent to setting the trace level using the following command:
mqsichangetrace AJGBROKER1 -u -e WSTest -l debug

We stopped the trace using the broker toolkit and ran the following commands to
extract and format the trace:

mqsireadlog AJGBROKER1 -u -e WSTest -o WSTest.xml

mqsiformatlog -i WSTest.xml -o WSTest.txt

9.1.3 Tracing the Message Broker flow on System z

Running traces on a System z broker is similar to the previous section. We have
the option of using the toolkit as above or using an MVS operator command:

f mq8gbrk,ct u=yes,e=’WSTest’,l=debug

However, we found entering the command using SDSF resulted in the WSTest
being converted to upper case, resulting in an error due to undefined execution
group.

We found that the sequence of steps documented above for collecting a trace on
distributed platforms (including Windows) can be run unchanged in a batch UNIX
System Services job. For example to start the trace we submitted the JCL in
Example 9-2 on page 218.
 Chapter 9. Tracing the Change of Address scenario 217

Example 9-2 Broker Commands Batch job

//ITSOBIP JOB ,'WMB COMMAND',CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID
//*
//**
//* Copy ENVFILE to SYSOUT
//**
//*
//COPYENV EXEC PGM=IKJEFT01,
// PARM='OCOPY INDD(BIPFROM) OUTDD(ENVFILE)'
//SYSTSPRT DD DUMMY
//BIPFROM DD PATHOPTS=(ORDONLY),
// PATH='/u/mq8gbrk/ENVFILE'
//ENVFILE DD SYSOUT=*,DCB=(RECFM=V,LRECL=256)
//SYSTSIN DD DUMMY
//*
//**
//* Run mqsi command
//**
//*
//BIPLIST EXEC PGM=IKJEFT01,REGION=0M
//* DB2 Runtime Libraries
//STEPLIB DD DISP=SHR,DSN=DB8M8.SDSNEXIT
// DD DISP=SHR,DSN=DB8M8.SDSNLOAD
// DD DISP=SHR,DSN=DB8M8.SDSNLOD2
//* MQSeries Runtime Libraries
// DD DISP=SHR,DSN=MQ600.SCSQANLE
// DD DISP=SHR,DSN=MQ600.SCSQAUTH
// DD DISP=SHR,DSN=MQ600.SCSQLOAD
//STDENV DD PATHOPTS=(ORDONLY),
// PATH='/u/mq8gbrk/ENVFILE'
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
BPXBATSL PGM -
 /usr/lpp/mqsi/mb8g/bin/-
mqsichangetrace MQ8GBRK -u -e WSTest -l debug
/*
//
218 Developing Web Services Using CICS, WMQ, and WMB

9.2 The annotated trace of the scenario

The following traces describe the most common scenario of the Change of
Address application, that is, the actual change of address. In this scenario, the
postal service operator makes a change to a registered person’s address using
option 3 of the Change of Address application. This makes the change to the
mainframe DB2 table and puts the hash code of the old address onto the
publication queue. The CICS program finally sends a response screen to the
operator indicating success and the new hashcode.

The HashPublication message flow running on the System z broker now
publishes the hashcode to all the registered subscribers of the topic:
CICSWSAP/AddressChange, of which there are 3 in this trace example. This is
the end of the HashPublication message flow.

The third component is a trace of a broker message flow, which represents the
client side of the application. The client code receives the notification of the
address change via the hashcode publication and checks to see if they have a
client with that particular hashvalue. If so, it calls the CICS RetrieveAddress Web
service to retrieve the new address for that person. If successful, the message
flow updates the local customer database with the new address. This is the end
of the sequence.

The flowcharts in the following pages may help to understand the time sequence
and interactions of the various components. Note these flowcharts only represent
this particular scenario and not the full logic of the application.
 Chapter 9. Tracing the Change of Address scenario 219

Figure 9-3 Flow of the Address Update CICS programs ITSOUA04/03

9.2.1 The trace through CICS

This section shows a trace through one scenario of the Change of Address
application.

The trace begins with the postal service operator invoking the Address Change
option by selecting Option 3 from the IT00 main menu. The sequence of events
from a CICS perspective involves three maps and is seen in Figure 9-4 on
page 221, Figure 9-5 on page 221, and Figure 9-6 on page 222.

Retrieve NAMES DB table
entry for the person named

Call GetHash to retrieve
Add ressHash for new

address

Call ITSOUA03 to
add new address to
ADDRESS DB table

Update NAMES db entry
using new hash & address

MQPUT1
AddressHash to Publication

Queue

Program IT SOUA04

Option 3
Add/Update

Address

NAMESNAMES

Call GetHash to
retrieve

Add ressHash for address

INSERT new address entry
into ADDRESS table

ADDRESSADDRESS

PublicationPublication
QueueQueue

Program IT SOUA043
220 Developing Web Services Using CICS, WMQ, and WMB

Figure 9-4 Option 3 to Add/Update Address

The operator then enters the new address details:

Figure 9-5 Entering new address details

Next the operator presses ENTER to perform the update.
 Chapter 9. Tracing the Change of Address scenario 221

Figure 9-6 New address successfully entered

The flowchart in Figure 9-3 on page 220 describes the action of this update
process and names the CICS business logic programs that are invoked for this
scenario:

– ITSOUA04 - updates the new address in a local database and publishes
the notification of the update to the broker using MQPUT.

– ITSOUA03 - INSERTs the new address into a database.

1. Start the transaction
The CICS trace in Example 9-3 on page 223 shows the start of program
ITSOUA01, which SENDs the entered name and new address details from
Figure 9-5 on page 221 and then returns with transaction IT14.
222 Developing Web Services Using CICS, WMQ, and WMB

Example 9-3 Starting the transaction

2. Call DB2 and generate an AddressHash
Transaction IT14 starts program ITSOUA02, which receives the entered data
into a commarea and then LINKS to the business logic module ITSOUA04. This
program performs the following and is highlighted in Example 9-4 on page 224:

– Call DB2 to retrieve the record for the person from the local database.

– Link to program ITSOGH03 to generate a hash value for the new address.

– Link to program ITSOUA03.

AP 19A0 APLX ENTRY START_PROGRAM ITSOUA01,CEDF,FULLAPI,EXEC,NO,2402BB58,00000000 , 00000000,1,NO
DS 0010 DSBR ENTRY INQUIRE_TCB
DS 0011 DSBR EXIT INQUIRE_TCB/OK 22C16D40
AP E160 EXEC ENTRY SEND 'MAP1 ' AT X'26704808',AT X'267047F0','ITSOMS2' AT X'A67047FC',MAPO
AP 00FA BMS ENTRY SEND-OUT SAVE ERASE MAP MAPSET 0003,00000562,04000020
AP 00FA BMS ENTRY SEND-OUT SAVE ERASE MAP MAPSET 0003,00000562,04000020
AP FD01 ZARQ ENTRY APPL_REQ 24FDE030,ERASE,WRITE
AP FD81 ZARQ EXIT APPL_REQ
AP 00FA BMS EXIT 0005,00000000,00000000
AP 00FA BMS EXIT 0005,00000000,00000000
AP E161 EXEC EXIT SEND 'MAP1 ' AT X'26704808',AT X'267047F0','ITSOMS2' AT X'A67047FC',MAPO
AP E160 EXEC ENTRY RETURN 'IT14' AT X'A6704828',NOHANDLE,C/370,00005000
AP 1700 TFIQ ENTRY SET_TERMINAL_FACILITY IT14,NO
AP 1701 TFIQ EXIT SET_TERMINAL_FACILITY/OK
DS 0010 DSBR ENTRY INQUIRE_TASK
DS 0011 DSBR EXIT INQUIRE_TASK/OK 24EAE030 , 00000003
DS 0002 DSAT ENTRY RELEASE_OPEN_TCB 24EAE030 , 00000003
DS 0003 DSAT EXIT RELEASE_OPEN_TCB/OK
AP 19A1 APLX EXIT START_PROGRAM/OK ,NO,ITSOUA01
AP 2500 ERMSP ENTRY PERFORM_PREPARE NO,0005C864
AP 2501 ERMSP EXIT PERFORM_PREPARE/OK READ_ONLY
AP 1760 LTRC ENTRY PERFORM_PREPARE NO,24FDE030
AP 1761 LTRC EXIT PERFORM_PREPARE/OK READ_ONLY
AP 05A8 APRC ENTRY PERFORM_PREPARE NO,00000001
AP 05A9 APRC EXIT PERFORM_PREPARE/OK READ_ONLY
AP 2500 ERMSP ENTRY PERFORM_COMMIT 00131730,NO,NO,NO,NO,NO,FORWARD,ABORT,UNNECESSARY,EYU9XSTR
AP 2501 ERMSP EXIT PERFORM_COMMIT/OK YES,YES,YES,NO,UNNECESSARY,EYU9XSTR
AP 2500 ERMSP ENTRY PERFORM_COMMIT NO,FORWARD,0005C864
AP 2520 ERM ENTRY CALL-TRUES-FOR-TASK-END
AP 2521 ERM EXIT CALL-TRUES-FOR-TASK-END
AP 2501 ERMSP EXIT PERFORM_COMMIT/OK YES
AP 1760 LTRC ENTRY PERFORM_COMMIT NO,FORWARD,24FDE030
AP 1710 TFRF ENTRY RELEASE_FACILITY NO,NORMAL,24FDE030,TC05
AP FD0B ZISP ENTRY FACILITY_REQ 24FDE030,FREE_DETACH,IMPLICIT
XM 1001 XMIQ ENTRY SET_TRANSACTION NONE,NO
XM 1002 XMIQ EXIT SET_TRANSACTION/OK
AP FD03 ZDET ENTRY DETACH 24FDE030,TC05
AP FD18 ZSDS ENTRY SEND_DFSYN 24FDE030,TC05
AP FD1D ZSDR ENTRY SEND_DFSYN_RESP 24FDE030,TC05
AP FC90 VIO EVENT TCTTE(24FDE030) SC38TC05,0032,SEND,DATA,0,RQE1,OIC,EB
AP FD8B ZISP EXIT FACILITY_REQ
AP 1711 TFRF EXIT RELEASE_FACILITY/OK TC05
AP 1761 LTRC EXIT PERFORM_COMMIT/OK NO
AP 05A8 APRC ENTRY PERFORM_COMMIT NO,FORWARD,00000001
AP 05A9 APRC EXIT PERFORM_COMMIT/OK NO
AP 0590 APXM ENTRY RELEASE_XM_CLIENT NORMAL
AP 0591 APXM EXIT RELEASE_XM_CLIENT/OK
 Chapter 9. Tracing the Change of Address scenario 223

Example 9-4 Check that name exists, and generate a Hash value

AP 0590 APXM ENTRY INIT_XM_CLIENT YES
AP EA00 TMP ENTRY LOCATE PFT,DFHCICST
AP EA01 TMP EXIT LOCATE PFT,DFHCICST,22C16B80,NORMAL
AP 0591 APXM EXIT INIT_XM_CLIENT/OK
AP 1790 TFXM ENTRY INIT_XM_CLIENT 24FDE030 , 02500000
XM 1001 XMIQ ENTRY SET_TRANSACTION TERMINAL,24FDE030
XM 1002 XMIQ EXIT SET_TRANSACTION/OK
AP 1791 TFXM EXIT INIT_XM_CLIENT/OK 00000000,00000000,YES,NO
DS 0002 DSAT ENTRY SET_PRIORITY 1
DS 0003 DSAT EXIT SET_PRIORITY/OK
AP 0590 APXM ENTRY BIND_XM_CLIENT
AP 0591 APXM EXIT BIND_XM_CLIENT/OK
AP 1790 TFXM ENTRY BIND_XM_CLIENT 24FDE030 , 02500000
AP 1791 TFXM EXIT BIND_XM_CLIENT/OK YES,ITSOUA02,YES
AP 0590 APXM ENTRY RMI_START_OF_TASK
AP 2520 ERM ENTRY CALL-TRUES-FOR-TASK-START
AP 2521 ERM EXIT CALL-TRUES-FOR-TASK-START
AP 0591 APXM EXIT RMI_START_OF_TASK/OK
AP 19A0 APLX ENTRY START_PROGRAM ITSOUA02,CEDF,FULLAPI,EXEC,NO,2402BBE0,00000000 , 00000000,1,NO
DS 0010 DSBR ENTRY INQUIRE_TCB
DS 0011 DSBR EXIT INQUIRE_TCB/OK 22C16D40
AP E160 EXEC ENTRY RECEIVE 'MAP1 ' AT X'26706774',AT X'26708130','ITSOMS2' AT X'A670676C',TERM
AP 00FA BMS ENTRY MAP-FROM IN MAP MAPSET 0003,00020505,00000020
AP 00FA BMS ENTRY MAP-FROM IN MAP MAPSET 0003,00020505,00000020
AP 00FA BMS EXIT 0005,00000000,00000000
AP 00FA BMS EXIT 0005,00000000,00000000
AP E161 EXEC EXIT RECEIVE 'MAP1 ' AT X'26706774',AT X'26708130','ITSOMS2' AT X'A670676C',TERM
AP E160 EXEC ENTRY ADDRESS AT X'A67084D8',NOHANDLE,C/370,00350003
AP E161 EXEC EXIT ADDRESS X'002000D0' AT X'A67084D8',0,0,NOHANDLE,C/370,00350003
AP E160 EXEC ENTRY LINK 'ITSOUA04' AT X'267067D0','Thomas ..
AP 19A0 APLX ENTRY START_PROGRAM ITSOUA04,CEDF,FULLAPI,EXEC,NO,2402BC24,26707DF8 , 000001DC,2,NO
DS 0010 DSBR ENTRY INQUIRE_TCB
DS 0011 DSBR EXIT INQUIRE_TCB/OK 22C16DD0
AP E160 EXEC ENTRY ADDRESS AT X'A67930D8',NOHANDLE,C/370,00019500
AP E161 EXEC EXIT ADDRESS X'26707DF8' AT X'A67930D8',0,0,NOHANDLE,C/370,00019500
AP E160 EXEC ENTRY WRITEQ TS 'UA04 ' AT X'26790B10','Thom' AT X'267D7CD0',4 AT X'A6793388',A
AP E161 EXEC EXIT WRITEQ TS 'UA04 ' AT X'26790B10','Thom' AT X'267D7CD0',4 AT X'A6793388',A
AP 2520 ERM ENTRY C-APPLICATION-CALL-TO-TRUE(DSNCSQL)
AP 3180 D2EX1 ENTRY APPLICATION REQUEST EXEC SQL SELECT
AP 3250 D2D2 ENTRY DB2_API_CALL 24039030
AP 3251 D2D2 EXIT DB2_API_CALL/OK
AP 3181 D2EX1 EXIT APPLICATION-REQUEST SQLCODE 0 RETURNED ON EXEC SQL SELECT
AP 2521 ERM EXIT C-APPLICATION-CALL-TO-TRUE(DSNCSQL)
AP E160 EXEC ENTRY LINK 'ITSOGH03' AT X'26790BC8','IBM Georgia ..
AP 19A0 APLX ENTRY START_PROGRAM ITSOGH03,CEDF,FULLAPI,EXEC,NO,2402BC68,26792F90 , 00000144,3,NO
DS 0010 DSBR ENTRY INQUIRE_TCB
DS 0011 DSBR EXIT INQUIRE_TCB/OK 22C16E60
AP E160 EXEC ENTRY ADDRESS AT X'A67F8898',NOHANDLE,C/370,00014012
AP E161 EXEC EXIT ADDRESS X'26792F90' AT X'A67F8898',0,0,NOHANDLE,C/370,00014012
AP E160 EXEC ENTRY WRITEQ TS 'FRED ' AT X'267F72A4','IBM Georgia
AP E161 EXEC EXIT WRITEQ TS 'FRED ' AT X'267F72A4','IBM Georgia
AP E160 EXEC ENTRY RETURN NOHANDLE C/370 00017610
DS 0010 DSBR ENTRY INQUIRE_TASK
DS 0011 DSBR EXIT INQUIRE_TASK/OK 22C03D50 , 00000007
DS 0004 DSSR ENTRY RESUME 005B0003
DS 0005 DSSR EXIT RESUME/OK
DS 0002 DSAT ENTRY RELEASE_OPEN_TCB 22C03D50 , 00000007
DS 0003 DSAT EXIT RELEASE_OPEN_TCB/OK
AP 19A1 APLX EXIT START_PROGRAM/OK ,NO,ITSOGH03
AP E161 EXEC EXIT LINK 'ITSOGH03' AT X'26790BC8','IBM Georgia ..
AP E160 EXEC ENTRY LINK 'ITSOUA03' AT X'26790B44','IBM Georgia ..
224 Developing Web Services Using CICS, WMQ, and WMB

3. Update database with new address
Program ITSOUA03 now adds the new address and new hash value to the local
database. Example 9-5 shows that the following is performed:

– ITSOUA03 starts.

– Link to ITSOGH03 to GetHash value.

– Call to DB2 to INSERT new address and hash value into the database.

– RETURN to ITSOUA04.

Example 9-5 Update new address

AP 19A0 APLX ENTRY START_PROGRAM ITSOUA03,CEDF,FULLAPI,EXEC,NO,2402BCAC,267930E0 , 00000140,3,NO
DS 0005 DSSR EXIT SUSPEND/OK
AP F300 APTI ENTRY NOTIFY 00E70000 , 00000000
DS 0004 DSSR ENTRY RESUME 00810003
DS 0005 DSSR EXIT RESUME/OK
AP F301 APTI EXIT NOTIFY/OK
DS 0004 DSSR ENTRY SUSPEND 005B0003,TIEXPIRY,NO,TIMER,DS_NUDGE
DS 0005 DSSR EXIT SUSPEND/OK
AP F322 APTIX RESUM SYSTEM TASK APTIX RESUMED
AP 00F3 ICP ENTRY ICE EXPIRY ANALYSIS C003,00000000,00000000
AP 00F3 ICP EXIT NORMAL 0005,00000000,00000000
DS 0004 DSSR ENTRY SUSPEND 00810003,ICEXPIRY,NO,TIMER,DFHAPTIX
DS 0005 DSSR EXIT WAIT_MVS/OK
AP E161 EXEC EXIT WAIT EXTERNAL X'250E6ABC' AT X'250E65F8',3 AT X'250E662C','CDB2TIME' AT X'
AP E160 EXEC ENTRY ENQ '.{.0....' AT X'240552B0',8 AT X'A50E661C',NOHANDLE,ASM
AP E161 EXEC EXIT ENQ '.{.0....' AT X'240552B0',8 AT X'A50E661C',0,0,NOHANDLE,ASM
DS 0010 DSBR ENTRY INQUIRE_TCB
DS 0011 DSBR EXIT INQUIRE_TCB/OK 22C16E60
AP E160 EXEC ENTRY ADDRESS AT X'A67FA830',NOHANDLE,C/370,00008001
AP E161 EXEC EXIT ADDRESS X'267930E0' AT X'A67FA830',0,0,NOHANDLE,C/370,00008001
AP E160 EXEC ENTRY WRITEQ TS 'UA03 ' AT X'267F9024','IBM Georgia
AP E161 EXEC EXIT WRITEQ TS 'UA03 ' AT X'267F9024','IBM Georgia
AP E160 EXEC ENTRY LINK 'ITSOGH03' AT X'267F9044','IBM Georgia ..
AP 19A0 APLX ENTRY START_PROGRAM ITSOGH03,CEDF,FULLAPI,EXEC,NO,2402BC68,267FA838 , 00000144,4,NO
DS 0010 DSBR ENTRY INQUIRE_TCB
DS 0011 DSBR EXIT INQUIRE_TCB/OK 22C16EF0
AP E160 EXEC ENTRY ADDRESS AT X'A67F8898',NOHANDLE,C/370,00014012
AP E161 EXEC EXIT ADDRESS X'267FA838' AT X'A67F8898',0,0,NOHANDLE,C/370,00014012
AP E160 EXEC ENTRY WRITEQ TS 'FRED ' AT X'267F72A4','IBM Georgia
AP E161 EXEC EXIT WRITEQ TS 'FRED ' AT X'267F72A4','IBM Georgia
AP E160 EXEC ENTRY RETURN NOHANDLE C/370 00017610
DS 0010 DSBR ENTRY INQUIRE_TASK
DS 0011 DSBR EXIT INQUIRE_TASK/OK 22C03C38 , 00000007
DS 0002 DSAT ENTRY RELEASE_OPEN_TCB 22C03C38 , 00000007
DS 0003 DSAT EXIT RELEASE_OPEN_TCB/OK
AP 19A1 APLX EXIT START_PROGRAM/OK ,NO,ITSOGH03
AP E161 EXEC EXIT LINK 'ITSOGH03' AT X'267F9044','IBM Georgia ..
AP 2520 ERM ENTRY C-APPLICATION-CALL-TO-TRUE(DSNCSQL)
AP 3180 D2EX1 ENTRY APPLICATION REQUEST EXEC SQL INSERT
AP 3250 D2D2 ENTRY DB2_API_CALL 24039030
AP 3251 D2D2 EXIT DB2_API_CALL/OK
AP 3181 D2EX1 EXIT APPLICATION-REQUEST SQLCODE 0 RETURNED ON EXEC SQL INSERT
AP 2521 ERM EXIT C-APPLICATION-CALL-TO-TRUE(DSNCSQL)
AP E160 EXEC ENTRY RETURN NOHANDLE C/370 00018800
AP 19A1 APLX EXIT START_PROGRAM/OK ,NO,ITSOUA03
AP E161 EXEC EXIT LINK 'ITSOUA03' AT X'26790B44','IBM Georgia ..
 Chapter 9. Tracing the Change of Address scenario 225

4. Call MQ to write the old AddressHash to a queue
The processing has now returned to ITSOUA04, which performs the following
actions and is highlighted in Example 9-6:

– Call to DB2 to UPDATE the new address and hash in the NAMES table.

– Call to MQ to MQPUT the Old AddressHash value to the queue named
CICSWSAP.PUBLICATION.QUEUE.

– Return to presentation logic program ITSOUA02.

Example 9-6 Call to MQ to write the Old AddressHash

5. Display results in CICS and terminate task
This is the conclusion of the CICS processing with a return to the presentation
logic in program ITSOUA02 and task cleanup. Example 9-7 on page 227 shows
the following actions:

– ITSOUA02 SENDs the map containing the results of the Add/Update
Address to the terminal. This is also seen in Figure 9-6 on page 222.

– The CICS task is then terminated.

AP 2520 ERM ENTRY C-APPLICATION-CALL-TO-TRUE(DSNCSQL)
AP 3180 D2EX1 ENTRY APPLICATION REQUEST EXEC SQL UPDATE
AP 3250 D2D2 ENTRY DB2_API_CALL 24039030
AP 3251 D2D2 EXIT DB2_API_CALL/OK
AP 3181 D2EX1 EXIT APPLICATION-REQUEST SQLCODE 0 RETURNED ON EXEC SQL UPDATE
AP 2521 ERM EXIT C-APPLICATION-CALL-TO-TRUE(DSNCSQL)
AP 2520 ERM ENTRY C-APPLICATION-CALL-TO-TRUE(MQM)
AP E160 EXEC ENTRY ASSIGN AT X'A6E01977',NOHANDLE,ASM,15920000
AP E161 EXEC EXIT ASSIGN X'40' AT X'A6E01977',0,0,NOHANDLE,ASM,15920000
AP E160 EXEC ENTRY ASSIGN AT X'A50F4530',NOHANDLE,ASM,16600000
AP E161 EXEC EXIT ASSIGN 'CICSUSER' AT X'A50F4530',0,0,NOHANDLE,ASM,16600000
AP E160 EXEC ENTRY ENTER 0 AT X'24ED7550','CICSWSAP.PUBLICATION.QUEUE......................' A
AP 0000 USER EVENT APPLICATION-PROGRAM-ENTRY CSQCP1ON CICSWSAP.PUBLICATION.QUEUE......................
AP E161 EXEC EXIT ENTER 0 AT X'24ED7550','CICSWSAP.PUBLICATION.QUEUE......................' A
AP E160 EXEC ENTRY ENTER 0 AT X'24ED7550',' 01387662669' AT X'267D7848',12 AT X'26E01970','CSQ
AP 0000 USER EVENT APPLICATION-PROGRAM-ENTRY CSQCP1MD 01387662669
AP E161 EXEC EXIT ENTER 0 AT X'24ED7550',' 01387662669' AT X'267D7848',12 AT X'26E01970','CSQ
DS 0004 DSSR ENTRY WAIT_MVS MQSeries,250F4580,NO,TASKSWCH
DS 0005 DSSR EXIT WAIT_MVS/OK
AP E160 EXEC ENTRY ENTER 0 AT X'24ED7550','CSQ MQ8G {.....s.........................' A
AP 0000 USER EVENT APPLICATION-PROGRAM-ENTRY CSQCP1MI CSQ MQ8G {.....s.........................
AP E161 EXEC EXIT ENTER 0 AT X'24ED7550','CSQ MQ8G {.....s.........................' A
AP 2521 ERM EXIT C-APPLICATION-CALL-TO-TRUE(MQM)
AP E160 EXEC ENTRY RETURN NOHANDLE C/370 00079900
DS 0010 DSBR ENTRY INQUIRE_TASK
DS 0011 DSBR EXIT INQUIRE_TASK/OK 24EAE378 , 00000007
DS 0002 DSAT ENTRY RELEASE_OPEN_TCB 24EAE378 , 00000007
DS 0003 DSAT EXIT RELEASE_OPEN_TCB/OK
AP 19A1 APLX EXIT START_PROGRAM/OK ,NO,ITSOUA04
AP E161 EXEC EXIT LINK 'ITSOUA04' AT X'267067D0','Thomas ..
226 Developing Web Services Using CICS, WMQ, and WMB

Example 9-7 Results are displayed to the terminal, and the CICS task is terminated

9.2.2 Tracing the Broker on System z

The flowchart in Figure 9-7 on page 228 shows the Hash Publication message
flow.

AP E160 EXEC ENTRY SEND 'MAP2 ' AT X'267067F0',AT X'26707FD8','ITSOMS2' AT X'A670676C',TERM
AP 00FA BMS ENTRY SEND-OUT SAVE ERASE MAP MAPSET 0003,000005E2 ...S,04000020
AP 00FA BMS ENTRY SEND-OUT SAVE ERASE MAP MAPSET 0003,000005E2 ...S,04000020
AP FD01 ZARQ ENTRY APPL_REQ 24FDE030,ERASE,WRITE
AP FD81 ZARQ EXIT APPL_REQ
AP 00FA BMS EXIT 0005,00000000,00000000
AP 00FA BMS EXIT 0005,00000000,00000000
AP E161 EXEC EXIT SEND 'MAP2 ' AT X'267067F0',AT X'26707FD8','ITSOMS2' AT X'A670676C',TERM
AP E160 EXEC ENTRY RETURN 'IT00' AT X'A67067B4',NOHANDLE,C/370,00770003
AP 1700 TFIQ ENTRY SET_TERMINAL_FACILITY IT00,NO
AP 1701 TFIQ EXIT SET_TERMINAL_FACILITY/OK
DS 0010 DSBR ENTRY INQUIRE_TASK
DS 0011 DSBR EXIT INQUIRE_TASK/OK 24EAE030 , 00000003
DS 0002 DSAT ENTRY RELEASE_OPEN_TCB 24EAE030 , 00000003
DS 0003 DSAT EXIT RELEASE_OPEN_TCB/OK
AP 19A1 APLX EXIT START_PROGRAM/OK ,NO,ITSOUA02

AP FD03 ZDET ENTRY DETACH 24FDE030,TC05
AP FD18 ZSDS ENTRY SEND_DFSYN 24FDE030,TC05
AP FD1D ZSDR ENTRY SEND_DFSYN_RESP 24FDE030,TC05
AP FC90 VIO EVENT TCTTE(24FDE030) SC38TC05,0033,SEND,DATA,0,RQE1,OIC,EB
AP FD8B ZISP EXIT FACILITY_REQ
AP 1711 TFRF EXIT RELEASE_FACILITY/OK TC05
AP 1761 LTRC EXIT PERFORM_COMMIT/OK NO
AP 05A8 APRC ENTRY PERFORM_COMMIT NO,FORWARD,00000001
AP 05A9 APRC EXIT PERFORM_COMMIT/OK NO
AP 0590 APXM ENTRY RELEASE_XM_CLIENT NORMAL
AP 0591 APXM EXIT RELEASE_XM_CLIENT/OK
 Chapter 9. Tracing the Change of Address scenario 227

Figure 9-7 The Hash Publication Flow

Example 9-8 The HashPublication message flow trace

Timestamps are formatted in local time, 300 minutes before GMT.
Trace written by version ; formatter version 6002

The following is the MQInput node processing the Hash message from the publication queue CICSWSAP.PUBLICATION.QUEUE

2007-02-21 22:39:58.438136 23 UserTrace BIP2632I: Message received and propagated to 'out' terminal of MQ input
node 'HashPublication.Get Pub Msg'.
2007-02-21 22:39:58.438228 23 UserTrace BIP6060I: Parser type ''Properties'' created on behalf of node
'HashPublication.Get Pub Msg' to handle portion of incoming message of length 0 bytes beginning at offset '0'.
2007-02-21 22:39:58.438308 23 UserTrace BIP6061I: Parser type ''MQMD'' created on behalf of node
'HashPublication.Get Pub Msg' to handle portion of incoming message of length '364' bytes beginning at offset '0'. Parser
type selected based on value ''MQHMD'' from previous parser.
2007-02-21 22:39:58.438400 23 UserTrace BIP6061I: Parser type ''MRM'' created on behalf of node
'HashPublication.Get Pub Msg' to handle portion of incoming message of length '12' bytes beginning at offset '364'. Parser
type selected based on value ''MRM'' from previous parser.

Having successfully parsed the Hash message, the Publish node is invoked to distribute the message to all registered
subscribers. At this time there were 3 subs:

2007-02-21 22:39:58.438460 23 UserTrace BIP7080I: Node 'HashPublication.Publish Hash.ComIbmPSService': The
Publication Node with Subscription Point ''AddressChange'' has received a message of type 'Publish'.
The Publication Node with Subscription Point ''AddressChange'' has started processing a message.
No user action required.
2007-02-21 22:39:58.438816 23 UserTrace BIP7081I: The Publication Node has matched '3' subscriptions to topic
''CICSWSAP/AddressChange'' for subscription point ''AddressChange''.
The Publication Node has matched subscriptions for the current publication and topic.
No user action required.
2007-02-21 22:39:58.438868 23 UserTrace BIP7082I: Node 'HashPublication.Publish Hash.ComIbmPSService':
Publishing to destination 'MQ8G:CICSWSAP.ADDRESS.CHANGE.VBS' for user 'ANDREWG'.
A publication destination is being added to the list of destinations to 'MQ8G:CICSWSAP.ADDRESS.CHANGE.VBS' for user
'ANDREWG'.
No user action required.
2007-02-21 22:39:58.438900 23 UserTrace BIP7082I: Node 'HashPublication.Publish Hash.ComIbmPSService':
Publishing to destination 'MQ8G:CICSWSAP.ADDRESS.CHANGE.MF' for user 'ANDREWG'.

MQGet of
Publication
message

Publication
Message Flow

PublicationPublication
QueueQueue

Publish Hash
MessageSubscriberSubscriber

QueueQueue
228 Developing Web Services Using CICS, WMQ, and WMB

A publication destination is being added to the list of destinations to 'MQ8G:CICSWSAP.ADDRESS.CHANGE.MF' for user
'ANDREWG'.
No user action required.
2007-02-21 22:39:58.438912 23 UserTrace BIP7082I: Node 'HashPublication.Publish Hash.ComIbmPSService':
Publishing to destination 'MQ8G:CICSWSAP.ADDRESS.CHANGE.WIN' for user 'ANDREWG'.
A publication destination is being added to the list of destinations to 'MQ8G:CICSWSAP.ADDRESS.CHANGE.WIN' for user
'ANDREWG'.
No user action required.
2007-02-21 22:39:58.438936 23 UserTrace BIP7085I: Node 'HashPublication.Publish Hash.ComIbmPSService': The
Publication Node has propagated a message to its output terminal for subscription point ''AddressChange''.
The Publication Node has propagated the current message to its output terminal.
No user action required.

The Publish node now does an MQPUT1 to each subscription queue:

2007-02-21 22:39:58.439188 23 UserTrace BIP2638I: The MQ output node 'HashPublication.Publish
Hash.ComIbmMQOutput' attempted to write a message to queue ''CICSWSAP.ADDRESS.CHANGE.VBS'' connected to queue manager
''MQ8G''. The MQCC was '0' and the MQRC was '0'.
2007-02-21 22:39:58.439200 23 UserTrace BIP2622I: Message successfully output by output node
'HashPublication.Publish Hash.ComIbmMQOutput' to queue ''CICSWSAP.ADDRESS.CHANGE.VBS'' on queue manager ''MQ8G''.
2007-02-21 22:39:58.439336 23 UserTrace BIP2638I: The MQ output node 'HashPublication.Publish
Hash.ComIbmMQOutput' attempted to write a message to queue ''CICSWSAP.ADDRESS.CHANGE.MF'' connected to queue manager
''MQ8G''. The MQCC was '0' and the MQRC was '0'.
2007-02-21 22:39:58.439348 23 UserTrace BIP2622I: Message successfully output by output node
'HashPublication.Publish Hash.ComIbmMQOutput' to queue ''CICSWSAP.ADDRESS.CHANGE.MF'' on queue manager ''MQ8G''.
2007-02-21 22:39:58.439512 23 UserTrace BIP2638I: The MQ output node 'HashPublication.Publish
Hash.ComIbmMQOutput' attempted to write a message to queue ''CICSWSAP.ADDRESS.CHANGE.WIN'' connected to queue manager
''MQ8G''. The MQCC was '0' and the MQRC was '0'.
2007-02-21 22:39:58.439556 23 UserTrace BIP2622I: Message successfully output by output node
'HashPublication.Publish Hash.ComIbmMQOutput' to queue ''CICSWSAP.ADDRESS.CHANGE.WIN'' on queue manager ''MQ8G''.

All done.

9.2.3 Tracing the Broker on Windows

Now the RetrieveAddressWithDB message flow is triggered on the Windows
platform by the receipt of the hash publication.

Example 9-9 RetrieveAddressWithDB MsgFlow Pt1

The RetrieveAddressWithDB msgflow is triggered by the arrival of the hashcode on our subscription queue
CICSWSAP.ADDRESS.CHANGE.
The MQInput node retrives the message and parses it.

2007-02-22 14:40:00.264122 10140 UserTrace BIP2632I: Message received and propagated to 'out' terminal of MQ input
node 'RetrieveAddressWithDB.GetPublication'.
2007-02-22 14:40:00.264232 10140 UserTrace BIP6060I: Parser type ''Properties'' created on behalf of node
'RetrieveAddressWithDB.GetPublication' to handle portion of incoming message of length 0 bytes beginning at offset '0'.
2007-02-22 14:40:00.264292 10140 UserTrace BIP6061I: Parser type ''MQMD'' created on behalf of node
'RetrieveAddressWithDB.GetPublication' to handle portion of incoming message of length '364' bytes beginning at offset
'0'. Parser type selected based on value ''MQHMD'' from previous parser.
2007-02-22 14:40:00.264479 10140 UserTrace BIP6061I: Parser type ''MRM'' created on behalf of node
'RetrieveAddressWithDB.GetPublication' to handle portion of incoming message of length '12' bytes beginning at offset
'364'. Parser type selected based on value ''MRM'' from previous parser.

The next node performs an SQL query to retrieve entries from the local CUSTOMER database table that match the hash code
just received. Of course there may be more than one entry, but for simplicity, we only process the first entry we find.

 Chapter 9. Tracing the Change of Address scenario 229

2007-02-22 14:40:00.264560 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Query Hash Code': Executing
statement ''DECLARE tns NAMESPACE 'http://schemas.xmlsoap.org/soap/envelope/';'' at ('.tns', '1.1').
2007-02-22 14:40:00.264744 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Query Hash Code': Executing
statement ''DECLARE resns NAMESPACE 'http://www.ITSORA03.ITSORACA.Response.com';'' at ('.resns', '1.1').
2007-02-22 14:40:00.264800 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Query Hash Code': Executing
statement ''DECLARE reqns NAMESPACE 'http://www.ITSORA03.ITSORACA.Request.com';'' at ('.reqns', '1.1').
2007-02-22 14:40:00.264860 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Query Hash Code': Executing
statement ''BEGIN ... END;'' at ('.RetrieveAddressWithDB_Database.Main', '2.2').
2007-02-22 14:40:00.264907 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Query Hash Code': Executing
statement ''SET Environment.Variables = THE (SELECT ROW (COLUMN(0) AS *:CUSTID, COLUMN(1) AS *:FIRSTNAME, COLUMN(2) AS
*:MIDDLENAME, COLUMN(3) AS *:LASTNAME, COLUMN(4) AS *:ADDRESS1, COLUMN(5) AS *:ADDRESS2, COLUMN(6) AS *:SUBURB, COLUMN(7)
AS *:STATE, COLUMN(8) AS *:POSTCODE, COLUMN(9) AS *:HASH) FROM DATABASE(, Root.MRM.hash));'' at
('.RetrieveAddressWithDB_Database.Main', '3.3').
2007-02-22 14:40:00.264948 10140 UserTrace BIP2538I: Node 'RetrieveAddressWithDB.Query Hash Code': Evaluating
expression ''THE (SELECT ROW (COLUMN(0) AS *:CUSTID, COLUMN(1) AS *:FIRSTNAME, COLUMN(2) AS *:MIDDLENAME, COLUMN(3) AS
*:LASTNAME, COLUMN(4) AS *:ADDRESS1, COLUMN(5) AS *:ADDRESS2, COLUMN(6) AS *:SUBURB, COLUMN(7) AS *:STATE, COLUMN(8) AS
*:POSTCODE, COLUMN(9) AS *:HASH) FROM DATABASE(, Root.MRM.hash))'' at ('.RetrieveAddressWithDB_Database.Main', '4.4').
2007-02-22 14:40:00.264979 10140 UserTrace BIP2572W: Node: 'RetrieveAddressWithDB.Query Hash Code':
('.RetrieveAddressWithDB_Database.Main', '4.4') : Finding one and only SELECT result.
2007-02-22 14:40:00.567390 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Query Hash Code': Evaluating
expression ''Root.MRM.hash'' at ('.RetrieveAddressWithDB_Database.Main', '6.24'). This resolved to ''Root.MRM.hash''. The
result was ''' 01387662669'''.
2007-02-22 14:40:00.567452 10140 UserTrace BIP2544I: Node 'RetrieveAddressWithDB.Query Hash Code': Executing
database SQL statement ''SELECT C.CUSTID, C.FIRSTNAME, C.MIDDLENAME, C.LASTNAME, C.ADDRESS1, C.ADDRESS2, C.SUBURB,
C.STATE, C.POSTCODE, C.HASH FROM ANDREWG.CUSTOMER C WHERE (C.HASH)=(?)'' derived from ('', '1.1'); expressions
''Root.MRM.hash''; resulting parameter values ''' 01387662669'''.
2007-02-22 14:40:00.568755 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Query Hash Code': Evaluating
expression ''DATABASE(, Root.MRM.hash)'' at ('', '1.1'). This resolved to ''SELECT C.CUSTID, C.FIRSTNAME, C.MIDDLENAME,
C.LASTNAME, C.ADDRESS1, C.ADDRESS2, C.SUBURB, C.STATE, C.POSTCODE, C.HASH FROM ANDREWG.CUSTOMER C WHERE (C.HASH)=(?)''.
The result was ''Complex result''.
2007-02-22 14:40:00.569040 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Query Hash Code': Assigning value
''1'' to field / variable ''Environment.Variables''.
2007-02-22 14:40:00.569087 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Query Hash Code': Assigning value
'''Thomas''' to field / variable ''Environment.Variables''.
2007-02-22 14:40:00.569126 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Query Hash Code': Assigning value
'''J''' to field / variable ''Environment.Variables''.
2007-02-22 14:40:00.569164 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Query Hash Code': Assigning value
'''Watson''' to field / variable ''Environment.Variables''.
2007-02-22 14:40:00.569212 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Query Hash Code': Assigning value
'''IBM Gabon ''' to field / variable ''Environment.Variables''.
2007-02-22 14:40:00.569262 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Query Hash Code': Assigning value
'''1 Bantu St ''' to field / variable ''Environment.Variables''.
2007-02-22 14:40:00.569302 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Query Hash Code': Assigning value
'''Libreville ''' to field / variable ''Environment.Variables''.
2007-02-22 14:40:00.569339 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Query Hash Code': Assigning value
'''GAB ''' to field / variable ''Environment.Variables''.
2007-02-22 14:40:00.569378 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Query Hash Code': Assigning value
'''11111 ''' to field / variable ''Environment.Variables''.
2007-02-22 14:40:00.569414 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Query Hash Code': Assigning value
''1387662669'' to field / variable ''Environment.Variables''.
2007-02-22 14:40:00.569500 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Query Hash Code': Executing
statement ''RETURN TRUE;'' at ('.RetrieveAddressWithDB_Database.Main', '7.3').
2007-02-22 14:40:00.569558 10140 UserTrace BIP4007I: Message propagated to 'out' terminal of node
'RetrieveAddressWithDB.Query Hash Code'.

We've found an entry for the client 'Thomas J Watson'. The message flow needs to create a Web service call to the
RetrieveAddress CICS w-s using the full name of our client and the just published hash value.

2007-02-22 14:40:00.569698 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''DECLARE tns NAMESPACE 'http://schemas.xmlsoap.org/soap/envelope/';'' at ('.tns', '1.1').
2007-02-22 14:40:00.569750 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''DECLARE resns NAMESPACE 'http://www.ITSORA03.ITSORACA.Response.com';'' at ('.resns', '1.1').
2007-02-22 14:40:00.569796 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''DECLARE reqns NAMESPACE 'http://www.ITSORA03.ITSORACA.Request.com';'' at ('.reqns', '1.1').
230 Developing Web Services Using CICS, WMQ, and WMB

2007-02-22 14:40:00.569841 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''BEGIN ... END;'' at ('.RetrieveAddressWithDB_Compute.Main', '2.2').
2007-02-22 14:40:00.569886 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''DECLARE SOAPENV NAMESPACE 'http://schemas.xmlsoap.org/soap/envelope/';'' at
('.RetrieveAddressWithDB_Compute.Main', '3.3').
2007-02-22 14:40:00.569939 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''SET OutputRoot.Properties.MessageSet = 'CICSWSAPWSDLMsgSet';'' at ('.RetrieveAddressWithDB_Compute.Main',
'5.4').
2007-02-22 14:40:00.569992 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Setup WS Call': Assigning value
'''CICSWSAPWSDLMsgSet''' to field / variable ''OutputRoot.Properties.MessageSet''.
2007-02-22 14:40:00.570047 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''SET OutputRoot.Properties.MessageType = 'Envelope';'' at ('.RetrieveAddressWithDB_Compute.Main', '6.4').
2007-02-22 14:40:00.570093 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Setup WS Call': Assigning value
'''Envelope''' to field / variable ''OutputRoot.Properties.MessageType''.
2007-02-22 14:40:00.570141 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''SET OutputRoot.Properties.MessageFormat = 'XML1';'' at ('.RetrieveAddressWithDB_Compute.Main', '7.4').
2007-02-22 14:40:00.570186 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Setup WS Call': Assigning value
'''XML1''' to field / variable ''OutputRoot.Properties.MessageFormat''.
2007-02-22 14:40:00.570245 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''SET OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:FirstName =
Environment.Variables.FIRSTNAME;'' at ('.RetrieveAddressWithDB_Compute.Main', '9.3').
2007-02-22 14:40:00.570309 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Setup WS Call': Evaluating
expression ''Environment.Variables.FIRSTNAME'' at ('.RetrieveAddressWithDB_Compute.Main', '10.7'). This resolved to
''Environment.Variables.FIRSTNAME''. The result was ''ROW... Root Element Type=50331648 NameSpace='' Name='FIRSTNAME'
Value='Thomas'''.
2007-02-22 14:40:00.570508 10140 UserTrace BIP2568I: Node 'RetrieveAddressWithDB.Setup WS Call': Copying sub-tree
from ''Environment.Variables.FIRSTNAME'' to
''OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:FirstName''.
2007-02-22 14:40:00.570571 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''SET OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:MiddleName =
Environment.Variables.MIDDLENAME;'' at ('.RetrieveAddressWithDB_Compute.Main', '11.3').
2007-02-22 14:40:00.570657 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Setup WS Call': Evaluating
expression ''Environment.Variables.MIDDLENAME'' at ('.RetrieveAddressWithDB_Compute.Main', '12.7'). This resolved to
''Environment.Variables.MIDDLENAME''. The result was ''ROW... Root Element Type=50331648 NameSpace='' Name='MIDDLENAME'
Value='J'''.
2007-02-22 14:40:00.570717 10140 UserTrace BIP2568I: Node 'RetrieveAddressWithDB.Setup WS Call': Copying sub-tree
from ''Environment.Variables.MIDDLENAME'' to
''OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:MiddleName''.
2007-02-22 14:40:00.570769 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''SET OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:LastName =
Environment.Variables.LASTNAME;'' at ('.RetrieveAddressWithDB_Compute.Main', '13.3').
2007-02-22 14:40:00.570825 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Setup WS Call': Evaluating
expression ''Environment.Variables.LASTNAME'' at ('.RetrieveAddressWithDB_Compute.Main', '14.7'). This resolved to
''Environment.Variables.LASTNAME''. The result was ''ROW... Root Element Type=50331648 NameSpace='' Name='LASTNAME'
Value='Watson'''.
2007-02-22 14:40:00.570885 10140 UserTrace BIP2568I: Node 'RetrieveAddressWithDB.Setup WS Call': Copying sub-tree
from ''Environment.Variables.LASTNAME'' to
''OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:LastName''.
2007-02-22 14:40:00.570935 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''SET OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:AddressHash =
LTRIM(InputRoot.MRM.hash);'' at ('.RetrieveAddressWithDB_Compute.Main', '15.3').
2007-02-22 14:40:00.570986 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Setup WS Call': Evaluating
expression ''InputRoot.MRM.hash'' at ('.RetrieveAddressWithDB_Compute.Main', '16.12'). This resolved to
''InputRoot.MRM.hash''. The result was ''' 01387662669'''.
2007-02-22 14:40:00.571030 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Setup WS Call': Evaluating
expression ''LTRIM(InputRoot.MRM.hash)'' at ('.RetrieveAddressWithDB_Compute.Main', '16.6'). This resolved to ''LTRIM('
01387662669', NULL)''. The result was '''01387662669'''.
2007-02-22 14:40:00.571085 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Setup WS Call': Assigning value
'''01387662669''' to field / variable
''OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:AddressHash''.
2007-02-22 14:40:00.571134 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''SET OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:ClientId = 1;'' at
('.RetrieveAddressWithDB_Compute.Main', '17.3').
2007-02-22 14:40:00.571201 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Setup WS Call': Assigning value
''1'' to field / variable ''OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:ClientId''.
 Chapter 9. Tracing the Change of Address scenario 231

2007-02-22 14:40:00.571259 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''SET OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:AddressLine1 = 'null';'' at
('.RetrieveAddressWithDB_Compute.Main', '21.3').
2007-02-22 14:40:00.571318 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Setup WS Call': Assigning value
'''null''' to field / variable ''OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:AddressLine1''.
2007-02-22 14:40:00.571367 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''SET OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:AddressLine2 = 'null';'' at
('.RetrieveAddressWithDB_Compute.Main', '22.3').
2007-02-22 14:40:00.571430 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Setup WS Call': Assigning value
'''null''' to field / variable ''OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:AddressLine2''.
2007-02-22 14:40:00.571479 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''SET OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:Suburb = 'null';'' at
('.RetrieveAddressWithDB_Compute.Main', '23.3').
2007-02-22 14:40:00.571690 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Setup WS Call': Assigning value
'''null''' to field / variable ''OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:Suburb''.
2007-02-22 14:40:00.571743 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''SET OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:State = 'null';'' at
('.RetrieveAddressWithDB_Compute.Main', '24.3').
2007-02-22 14:40:00.571803 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Setup WS Call': Assigning value
'''null''' to field / variable ''OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:State''.
2007-02-22 14:40:00.571853 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''SET OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:Postcode = 'null';'' at
('.RetrieveAddressWithDB_Compute.Main', '25.3').
2007-02-22 14:40:00.571914 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Setup WS Call': Assigning value
'''null''' to field / variable ''OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:Postcode''.
2007-02-22 14:40:00.571961 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''SET OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:rc = -1;'' at
('.RetrieveAddressWithDB_Compute.Main', '26.3').
2007-02-22 14:40:00.572013 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Setup WS Call': Evaluating
expression ''-1'' at ('.RetrieveAddressWithDB_Compute.Main', '26.81'). This resolved to ''-1''. The result was ''-1''.
2007-02-22 14:40:00.572068 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Setup WS Call': Assigning value
''-1'' to field / variable ''OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:rc''.
2007-02-22 14:40:00.572116 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''SET OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:reason = 'null';'' at
('.RetrieveAddressWithDB_Compute.Main', '27.3').
2007-02-22 14:40:00.572176 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Setup WS Call': Assigning value
'''null''' to field / variable ''OutputRoot.MRM.SOAPENV:Body.reqns:ITSORA03Operation.reqns:raca.reqns:reason''.
2007-02-22 14:40:00.572225 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Setup WS Call': Executing
statement ''RETURN TRUE;'' at ('.RetrieveAddressWithDB_Compute.Main', '29.3').
2007-02-22 14:40:00.572301 10140 UserTrace BIP4007I: Message propagated to 'out' terminal of node
'RetrieveAddressWithDB.Setup WS Call'.

There is one of the following warnings for each of the elements referenced. We have edited out the others for brevity.

2007-02-22 14:40:00.572815 10140 UserTrace BIP5493W: Message, element or attribute
'http://www.ITSORA03.ITSORACA.Request.com:AddressLine1' is self-defining within parent
'http://www.ITSORA03.ITSORACA.Request.com:raca'.
The message, element or attribute 'http://www.ITSORA03.ITSORACA.Request.com:AddressLine1' did not match with any
corresponding artifact in the message model hence it is considered to be self-defining. If it is not intended that this
message, element or attribute be self-defining, check that the message set is referenced in the message properties, or
modify the message model to correspond to the instance message, or modify the instance message to correspond to the
message model.

Now that all the necessary w-s parameters are set, we call the RetrieveAddress to invoke the actual CICS w-s.
232 Developing Web Services Using CICS, WMQ, and WMB

9.2.4 Tracing the CICS Web service

We now pick up the trace on the CICS side where the CICS Web service pipeline
processes the Web service request for the RetrieveAddress logic and hands
back the result. The flowchart in Figure 9-8 shows the interaction between the
message flow running in the Broker on the client Windows platform and the Web
service in CICS where we are exposing our business logic as a service provider.
The CICS program being called is ITSORA03.

Figure 9-8 Client calling CICS RetrieveAddress Web service

Retrieve NAMES DB table
entry for the person named

Call GetHash to retrieve
Add ressHash for new

address

Call ITSOUA03 to
add new address to
ADDRESS DB table

Update NAMES db entry
using new hash & address

MQPUT1
AddressHash to Publication

Queue

Program IT SOUA04

Option 3
Add/Update

Address

NAMESNAMES

Call GetHash to
retrieve

Add ressHash for address

INSERT new address entry
into ADDRESS table

ADDRESSADDRESS

PublicationPublication
QueueQueue

Program IT SOUA043
 Chapter 9. Tracing the Change of Address scenario 233

1. The Web service request enters CICS
When the client broker submits the Web service request to the CICS region, the
receiving TCPIPSERVICE detects the incoming request and the actions are
performed and displayed in the trace in Example 9-10.

– Transaction CWXN starts and invokes program DFHWBXN to handle the
incoming request.

– The CICS SOAP HTTP Inbound Router transaction CPIH is attached.

Example 9-10 Request for Web services enters CICS

SL XM 1101 XMAT ENTRY ATTACH CWXN,C,NO,YES,SOCKET,24FB3000 , 00000030
SL XM 0401 XMLD ENTRY LOCATE_AND_LOCK_TRANDEF CWXN
SL XM 0402 XMLD EXIT LOCATE_AND_LOCK_TRANDEF/OK 240D79F0 , 0000007F,CWXN
SL DS 0002 DSAT ENTRY ATTACH 24ED0650,0,1,NON_SYSTEM,24ED0650 , 0000211C
SL DS 0003 DSAT EXIT ATTACH/OK 0C8C0097
SL XM 1102 XMAT EXIT ATTACH/OK 0000211C
SL DS 0004 DSSR ENTRY WAIT_MVS SODOMAIN,22C2B048,NO,MISC,SO_NOWORK
QR DS 0012 DSKE ENTRY TASK_REPLY 23E92080,420B9980
QR XM 1305 XMTA ENTRY TASK_REPLY 24ED0650,0C8C0097,0C8C0097
QR AP 0590 APXM ENTRY INIT_XM_CLIENT YES
QR AP EA00 TMP ENTRY LOCATE PFT,DFHCICST
QR AP EA01 TMP EXIT LOCATE PFT,DFHCICST,22C16B80,NORMAL
QR AP 0591 APXM EXIT INIT_XM_CLIENT/OK
QR DS 0002 DSAT ENTRY SET_PRIORITY 1
QR DS 0003 DSAT EXIT SET_PRIORITY/OK
QR AP 0590 APXM ENTRY BIND_XM_CLIENT
QR AP 0591 APXM EXIT BIND_XM_CLIENT/OK
QR AP 0590 APXM ENTRY RMI_START_OF_TASK
QR AP 2520 ERM ENTRY CALL-TRUES-FOR-TASK-START
QR AP 2521 ERM EXIT CALL-TRUES-FOR-TASK-START
QR AP 0591 APXM EXIT RMI_START_OF_TASK/OK
QR AP 1940 APLI ENTRY START_PROGRAM DFHWBXN,NOCEDF,FULLAPI,EXEC,NO,2402BCF0,00000000 , 00000000,1,NO
QR AP E160 EXEC ENTRY ADDRESS AT X'A4FE13E8',NOHANDLE,PLX,31840000
QR AP E161 EXEC EXIT ADDRESS X'24FB80D0' AT X'A4FE13E8',0,0,NOHANDLE,PLX,31840000
QR AP E160 EXEC ENTRY HANDLE ABEND X'25CF65CE' AT X'A4FE107C',PLX,32480000
QR AP E161 EXEC EXIT HANDLE ABEND X'25CF65CE' AT X'A4FE107C',0,0,PLX,32480000
QR DS 0004 DSSR ENTRY ADD_SUSPEND WBALIAS,CWBA
QR DS 0005 DSSR EXIT ADD_SUSPEND/OK 00770083
QR XM 1001 XMIQ ENTRY INQUIRE_TRANSACTION 24FE1640 , 00000000 , 00000008
QR XM 1002 XMIQ EXIT INQUIRE_TRANSACTION/OK C,24FE1640 , 00000000 , 00000008
SO DS 0004 DSSR ENTRY WAIT_MVS SOCKET,1E,24FA25D0,YES,SECOND,IDLE,RECEIVE
SO DS 0005 DSSR EXIT WAIT_MVS/OK
SO DS 0004 DSSR ENTRY WAIT_MVS SOCKET,24FA25D0,YES,IDLE,RECEIVE
SO DS 0005 DSSR EXIT WAIT_MVS/OK
QR AP 4800 CCNV ENTRY VERIFY_IANA_CCSID utf-8
QR AP 4801 CCNV EXIT VERIFY_IANA_CCSID/OK 4B8
SO DS 0004 DSSR ENTRY WAIT_MVS SOCKET,24FA25D0,YES,IDLE,RECEIVE
SO DS 0005 DSSR EXIT WAIT_MVS/OK *
QR AP 4800 CCNV ENTRY CONVERT_DATA 333,25,26715000 , 00000000 , 00000093,26715000 , 00000000 , 00000093
QR AP 4801 CCNV EXIT CONVERT_DATA/OK 26715000 , 00000093 , 00000093,26715000 , 00000093 , 00000093
QR WB 0905 WBUR DATA URI-MAPPING-ELEMENT
QR AP 4800 CCNV ENTRY CONVERT_DATA 4B8,25,22C25760 , 00000000 , 0000051E,26715093 , 00000000 , 00007F6C
QR AP 4801 CCNV EXIT CONVERT_DATA/OK 22C25760 , 0000051E , 0000051E,26715093 , 0000051E , 00007F6C
QR XM 1101 XMAT ENTRY ATTACH CPIH,NONE,C,YES,YES,WEB,250F1030 , 00000360,SAME
QR XM 0401 XMLD ENTRY LOCATE_AND_LOCK_TRANDEF CPIH
QR XM 0402 XMLD EXIT LOCATE_AND_LOCK_TRANDEF/OK 24F46B90 , 000000BA,CPIH
QR DS 0002 DSAT ENTRY ATTACH 24ED04C8,0,1,NON_SYSTEM,24ED04C8 , 0000212C
QR DS 0003 DSAT EXIT ATTACH/OK 0C020051
QR XM 1102 XMAT EXIT ATTACH/OK 0000212C
QR DS 0004 DSSR ENTRY DELETE_SUSPEND 00770083
QR DS 0005 DSSR EXIT DELETE_SUSPEND/OK
QR AP 1941 APLI EXIT START_PROGRAM/OK ,NO,DFHWBXN
234 Developing Web Services Using CICS, WMQ, and WMB

URI Mapping
Of interest in the trace entries for Example 9-10 on page 234, is further detail on
the trace point for WB 0905 that shows the URI mapping in the CICS FULL trace
output in Example 9-11. In this entry you can see the following in the eyecatcher
area:

– Transaction CPIH

– Pipeline WSPIPE01

– The name of the Web service to be invoked - RetrieveAddress

– The relative URI for the service - /cicswsap/RetrieveAddress

Example 9-11 The FULL trace output showing URI mapping

WB 0905 WBUR DATA - URI-MAPPING-ELEMENT

TASK-00211 KE_NUM-00E3 TCB-QR /007DCD98 RET-A3014F40 TIME-22:39:59.4649770986 INTERVAL-00.0000037656 =007768=
 1-0000 24FBD5D0 000000F0 *..N}...0 *
 2-0000 00F06EC4 C6C8E6C2 E4D9C9D4 C1D74040 24FBD6C0 24FBDA80 5BF5F1F1 F2F8F040 *.0>DFHWBURIMAP ..O{....$511280 *
 0020 24FC10E0 24FC8150 01038330 24FC5330 00000000 00000000 00000019 00000000 *...\..a&..c.....................*
 0040 C3D7C9C8 00000000 40404040 40404040 40404040 40404040 40404040 40404040 *CPIH.... *
 0060 E6E2D7C9 D7C5F0F1 D985A399 8985A585 C1848499 85A2A240 40404040 40404040 *WSPIPE01RetrieveAddress *
 0080 40404040 40404040 00000000 00000000 00000000 00000000 00000000 00000000 * *
 00A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 00C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 00E0 00000015 00000000 00000000 00000000 *................ *
 3-0000 00B06EC4 C6C8E6C2 E5C9D9E3 C8D6E2E3 22C25070 24FC1030 24FC8070 00000000 *..>DFHWBVIRTHOST.B&.............*
 0020 80000002 40404040 40404040 00000015 00000000 00015C40 40404040 40404040 *.... * *
 0040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 0060 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 0080 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 00A0 40404040 40404040 40400000 00000000 * *
 4-0000 00806EC4 C6C8E6C2 E4D9C9D4 C1D7E7D5 24FBD5D0 D7400019 61838983 A2A6A281 *..>DFHWBURIMAPXN..N}P ../cicswsa*
 0020 9761D985 A3998985 A585C184 849985A2 A2404040 40404040 40404040 40404040 *p/RetrieveAddress *
 Chapter 9. Tracing the Change of Address scenario 235

2. A service provider pipeline is started
Transaction CPIH invokes the CICS program DFHPIDSH—the pipeline HTTP
inbound router module—starting a service provider pipeline. This is shown in
Example 9-12.

Example 9-12 Service provider pipeline is started

QR AP EA00 TMP ENTRY LOCATE PFT,DFHCICST
QR AP EA01 TMP EXIT LOCATE PFT,DFHCICST,22C16B80,NORMAL
QR AP 0591 APXM EXIT INIT_XM_CLIENT/OK
QR DS 0002 DSAT ENTRY SET_PRIORITY 1
QR DS 0003 DSAT EXIT SET_PRIORITY/OK
QR AP 0590 APXM ENTRY BIND_XM_CLIENT
QR AP 0591 APXM EXIT BIND_XM_CLIENT/OK
QR XM 1204 XMER ENTRY INQUIRE_DEFERRED_MESSAGE
QR XM 1205 XMER EXIT INQUIRE_DEFERRED_MESSAGE/EXCEPTION MESSAGE_NOT_FOUND,
QR AP 0590 APXM ENTRY RMI_START_OF_TASK
QR AP 2520 ERM ENTRY CALL-TRUES-FOR-TASK-START
QR AP 2521 ERM EXIT CALL-TRUES-FOR-TASK-START
QR AP 0591 APXM EXIT RMI_START_OF_TASK/OK
QR AP 1940 APLI ENTRY START_PROGRAM DFHPIDSH,NOCEDF,FULLAPI,EXEC,NO,2402BD34,00000000 , 00000000,1,NO
QR AP 09D0 PIDSH ENTRY SOAP_HTTP_INBOUND_ROUTER
QR XM 1001 XMIQ ENTRY INQUIRE_TRANSACTION
QR XM 1002 XMIQ EXIT INQUIRE_TRANSACTION/OK C
QR PI 0A20 PIIS ENTRY INIT
QR DS 0004 DSSR ENTRY ADD_SUSPEND PIISLSTN
QR DS 0005 DSSR EXIT ADD_SUSPEND/OK 00770085
QR PI 0A21 PIIS EXIT INIT 00000001,00000088
QR PI 0A2F PIIS ENTRY INIT_NODES
QR PI 0A34 PIIS EVENT ADD_NODE DFHPISN1
QR PI 0A30 PIIS EXIT INIT_NODES 00000001,00000001
QR PI 0A22 PIIS ENTRY RUN
QR WB 0307 WBAP DATA READ_HEADER
QR WB 0307 WBAP DATA READ_HEADER
QR PI 0A28 PIIS EVENT STATE F,T
QR PI 0A2A PIIS EVENT INITIAL_STATE T
QR PI 0A31 PIIS EVENT REQUEST_CNT
QR PI 0A40 PIIS EVENT FUNCTION_CNT PROCESS-REQUEST
QR PI 0A31 PIIS EVENT REQUEST_CNT
QR AP 4800 CCNV ENTRY CREATE_CONVERSION_TOKEN 25,4B8
QR AP 4801 CCNV EXIT CREATE_CONVERSION_TOKEN/OK 2601C11C , 00000000
236 Developing Web Services Using CICS, WMQ, and WMB

Pipeline details
The FULL trace entry for trace point ID PI 0A2F shows the details of the
PIPELINE, including the configuration file name, the HFS shelf, and pickup
directories. This is seen in Example 9-13 and shows the following:

– The pipeline name - WSPIPE01

– The configuration file name -
/usr/lpp/cicsts/samples/pipelines/basicsoap11provider.xml

– The HFS shelf directory - u/jnott/cicswsap/shelf

– The HFS pickup directory - u/jnott/cicswsap/wsbind/provider

Example 9-13 Full trace entry showing pipeline details

PI 0A2F PIIS ENTRY - INIT_NODES -

TASK-00212 KE_NUM-00E4 TCB-QR /007DCD98 RET-A59FDBA2 TIME-22:39:59.4732479272 INTERVAL-00.0008575942 =007997=
 1-0000 6EC4C6C8 D7C9C9E2 40404040 40404040 00000000 00000000 22C41064 22C41064 *>DFHPIIS D...D..*
 0020 E6E2D7C9 D7C5F0F1 D985A399 8985A585 C1848499 85A2A240 40404040 40404040 *WSPIPE01RetrieveAddress *
 0040 40404040 40404040 00000000 00000000 00000000 40404040 40404040 01000015 * *
 0060 00000000 00000000 00000000 00000000 D7C6D5D5 D5D5D5D5 D5D5D5D5 D5404040 *................PFNNNNNNNNNNN *
 0080 00000000 00000000 40404040 40404040 00000000 00000000 00000000 00000000 *........ *
 00A0 6EC4C6C8 D7C9C9E2 6DD5D6C4 C5404040 40404040 40404040 00000000 00000000 *>DFHPIIS_NODE *
 00C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 00E0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 0100 24EEA128 24EEA128 00000000 00000000 24EEA138 24EEA138 0000000A A385A7A3 *............................text*
 0120 61A79493 40404040 40404040 40404040 40404040 40404040 40404040 40404040 */xml *
 0140 40404040 40404040 40404040 40404040 40404040 40404040 40404040 00000000 * *
 0160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000C8 *...............................H*
 0180 D6D24040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 *OK *
 01A0 C8E6E2C1 D7D7D6D9 E3404040 40404040 40404040 40404040 40404040 40404040 *HWSAPPORT *

 2-0000 04646EC4 C6C8D7C9 D7C5C240 40404040 00000000 00000000 24F4B4B0 22C41608 *..>DFHPIPEB 4...D..*
 0020 E6E2D7C9 D7C5F0F1 00000001 0000001B 00000000 00000000 00000000 00000000 *WSPIPE01........................*

 0120 22C415D0 00000000 00000000 E6E2D7C9 D7C5F0F1 22B8EAA8 00000000 00000000 *.D.}........WSPIPE01...y........*
 0140 C4C6C8D7 C9E3D740 01010261 A4A29961 93979761 838983A2 A3A26183 8983A2A3 *DFHPITP .../usr/lpp/cicsts/cicst*
 0160 A2F3F161 A2819497 9385A261 97899785 93899585 A2618281 A28983A2 968197F1 *s31/samples/pipelines/basicsoap1*
 0180 F1979996 A5898485 994BA794 93000000 00000000 00000000 00000000 00000000 *1provider.xml...................*
 01A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*

 0240 00000000 00000000 00000061 A4619195 96A3A361 838983A2 A6A28197 61A28885 *.........../u/jnott/cicswsap/she*
 0260 93866100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *lf/.............................*

 0340 00000000 00000000 00000061 A4619195 96A3A361 838983A2 A6A28197 61A6A282 *.........../u/jnott/cicswsap/wsb*
 0360 89958461 979996A5 89848599 61000000 00000000 00000000 00000000 00000000 *ind/provider/...................*
 0380 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 03A0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 03C0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 *................................*
 Chapter 9. Tracing the Change of Address scenario 237

The incoming request
The trace point PI 0A41 contains the incoming request. The FULL entry showing
the entire request is shown in Example 9-14.

Example 9-14 Full trace record of the incoming request data

PI 0A31 PIIS EVENT - REQUEST_CNT -

TASK-00212 KE_NUM-00E4 TCB-QR /007DCD98 RET-A59FDBA2 TIME-22:39:59.4787713803 INTERVAL-00.0000002968 =008117=
 1-0000 3C3F786D 6C207665 7273696F 6E3D2231 2E30223F 3E3C746E 733A456E 76656C6F *<?xml version="1.0"?><tns:Envelo*
 0020 70652078 6D6C6E73 3A746E73 3D226874 74703A2F 2F736368 656D6173 2E786D6C *pe xmlns:tns="http://schemas.xml*
 0040 736F6170 2E6F7267 2F736F61 702F656E 76656C6F 70652F22 20786D6C 6E733A72 *soap.org/soap/envelope/" xmlns:r*
 0060 65716E73 3D226874 74703A2F 2F777777 2E495453 4F474830 332E4954 534F4748 *eqns="http://www.ITSOGH03.ITSOGH*
 0080 43492E52 65717565 73742E63 6F6D2220 786D6C6E 733A7265 736E733D 22687474 *CI.Request.com" xmlns:resns="htt*
 00A0 703A2F2F 7777772E 4954534F 47483033 2E495453 4F474843 492E5265 73706F6E *p://www.ITSOGH03.ITSOGHCI.Respon*
 00C0 73652E63 6F6D2220 786D6C6E 733A4E53 313D2268 7474703A 2F2F7777 772E4954 *se.com" xmlns:NS1="http://www.IT*
 00E0 534F5241 30332E49 54534F52 4143412E 52657175 6573742E 636F6D22 20786D6C *SORA03.ITSORACA.Request.com" xml*
 0100 6E733A4E 53323D22 68747470 3A2F2F77 77772E49 54534F52 4130332E 4954534F *ns:NS2="http://www.ITSORA03.ITSO*
 0120 52414341 2E526573 706F6E73 652E636F 6D222078 6D6C6E73 3A4E5333 3D226874 *RACA.Response.com" xmlns:NS3="ht*
 0140 74703A2F 2F777777 2E495453 4F534130 332E4954 534F5341 43412E52 65717565 *tp://www.ITSOSA03.ITSOSACA.Reque*
 0160 73742E63 6F6D2220 786D6C6E 733A4E53 343D2268 7474703A 2F2F7777 772E4954 *st.com" xmlns:NS4="http://www.IT*
 0180 534F5341 30332E49 54534F53 4143412E 52657370 6F6E7365 2E636F6D 2220786D *SOSA03.ITSOSACA.Response.com" xm*
 01A0 6C6E733A 4E53353D 22687474 703A2F2F 7777772E 4954534F 534E3033 2E495453 *lns:NS5="http://www.ITSOSN03.ITS*
 01C0 4F534E43 412E5265 71756573 742E636F 6D222078 6D6C6E73 3A4E5336 3D226874 *OSNCA.Request.com" xmlns:NS6="ht*
 01E0 74703A2F 2F777777 2E495453 4F534E30 332E4954 534F534E 43412E52 6573706F *tp://www.ITSOSN03.ITSOSNCA.Respo*
 0200 6E73652E 636F6D22 20786D6C 6E733A78 73643D22 68747470 3A2F2F77 77772E77 *nse.com" xmlns:xsd="http://www.w*
 0220 332E6F72 672F3230 30312F58 4D4C5363 68656D61 2220786D 6C6E733A 6768746E *3.org/2001/XMLSchema" xmlns:ghtn*
 0240 733D2268 7474703A 2F2F7777 772E4954 534F4748 30332E49 54534F47 4843492E *s="http://www.ITSOGH03.ITSOGHCI.*
 0260 636F6D22 20786D6C 6E733A4E 53373D22 68747470 3A2F2F77 77772E49 54534F52 *com" xmlns:NS7="http://www.ITSOR*
 0280 4130332E 4954534F 52414341 2E636F6D 2220786D 6C6E733A 7361746E 733D2268 *A03.ITSORACA.com" xmlns:satns="h*
 02A0 7474703A 2F2F7777 772E4954 534F5341 30332E49 54534F53 4143412E 636F6D22 *ttp://www.ITSOSA03.ITSOSACA.com"*
 02C0 20786D6C 6E733A73 6E746E73 3D226874 74703A2F 2F777777 2E495453 4F534E30 * xmlns:sntns="http://www.ITSOSN0*
 02E0 332E4954 534F534E 43412E63 6F6D2220 786D6C6E 733A7873 693D2268 7474703A *3.ITSOSNCA.com" xmlns:xsi="http:*
 0300 2F2F7777 772E7733 2E6F7267 2F323030 312F584D 4C536368 656D612D 696E7374 *//www.w3.org/2001/XMLSchema-inst*
 0320 616E6365 223E3C74 6E733A42 6F64793E 3C4E5331 3A495453 4F524130 334F7065 *ance"><tns:Body><NS1:ITSORA03Ope*
 0340 72617469 6F6E3E3C 4E53313A 72616361 3E3C4E53 313A4669 7273744E 616D653E *ration><NS1:raca><NS1:FirstName>*
 0360 54686F6D 61733C2F 4E53313A 46697273 744E616D 653E3C4E 53313A4D 6964646C *Thomas</NS1:FirstName><NS1:Middl*
 0380 654E616D 653E4A3C 2F4E5331 3A4D6964 646C654E 616D653E 3C4E5331 3A4C6173 *eName>J</NS1:MiddleName><NS1:Las*
 03A0 744E616D 653E5761 74736F6E 3C2F4E53 313A4C61 73744E61 6D653E3C 4E53313A *tName>Watson</NS1:LastName><NS1:*
 03C0 41646472 65737348 6173683E 31333837 36363236 36393C2F 4E53313A 41646472 *AddressHash>1387662669</NS1:Addr*
 03E0 65737348 6173683E 3C4E5331 3A436C69 656E7449 643E313C 2F4E5331 3A436C69 *essHash><NS1:ClientId>1</NS1:Cli*
 0400 656E7449 643E3C4E 53313A41 64647265 73734C69 6E65313E 6E756C6C 3C2F4E53 *entId><NS1:AddressLine1>null</NS*
 0420 313A4164 64726573 734C696E 65313E3C 4E53313A 41646472 6573734C 696E6532 *1:AddressLine1><NS1:AddressLine2*
 0440 3E6E756C 6C3C2F4E 53313A41 64647265 73734C69 6E65323E 3C4E5331 3A537562 *>null</NS1:AddressLine2><NS1:Sub*
 0460 7572623E 6E756C6C 3C2F4E53 313A5375 62757262 3E3C4E53 313A5374 6174653E *urb>null</NS1:Suburb><NS1:State>*
 0480 6E756C6C 3C2F4E53 313A5374 6174653E 3C4E5331 3A506F73 74636F64 653E6E75 *null</NS1:State><NS1:Postcode>nu*
 04A0 6C6C3C2F 4E53313A 506F7374 636F6465 3E3C4E53 313A7263 3E2D313C 2F4E5331 *ll</NS1:Postcode><NS1:rc>-1</NS1*
 04C0 3A72633E 3C4E5331 3A726561 736F6E3E 6E756C6C 3C2F4E53 313A7265 61736F6E *:rc><NS1:reason>null</NS1:reason*
 04E0 3E3C2F4E 53313A72 6163613E 3C2F4E53 313A4954 534F5241 30334F70 65726174 *></NS1:raca></NS1:ITSORA03Operat*
 0500 696F6E3E 3C2F746E 733A426F 64793E3C 2F746E73 3A456E76 656C6F70 653E *ion></tns:Body></tns:Envelope> *
238 Developing Web Services Using CICS, WMQ, and WMB

3. Handling the Request
The trace in Example 9-15 shows the CICS processing that continues:

– Program DFHPISN1 starts, which is the handler program for SOAP 1.1.

– DFHPIEP is invoked, which parses the incoming SOAP request.

Example 9-15 Parsing the incoming SOAP request

QR AP 1940 APLI ENTRY START_PROGRAM DFHPISN1,NOCEDF,FULLAPI,EXEC,NO,2402BD78,00000000 , 00000000,2,NO
L800B PI 0C15 PISN ENTRY SOAP_PARSER
L800B AP 1940 APLI ENTRY START_PROGRAM DFHPIEP,NOCEDF,FULLAPI,EXEC,NO,2402BDBC,23EA0730 , 00000010,3,NO
L800B AP 1948 APLI EVENT CALL-TO-LE/370 Thread_Initialization DFHPIEP
L800B AP 1949 APLI EVENT RETURN-FROM-LE/370 Thread_Initialization OK DFHPIEP
L800B AP 1948 APLI EVENT CALL-TO-LE/370 Rununit_Init_&_Begin_Invo DFHPIEP
L800B AP E160 EXEC ENTRY ADDRESS AT X'A6E01A30',SYSEIB,ASM,00000229
L800B AP E161 EXEC EXIT ADDRESS X'22CB2494' AT X'A6E01A30',0,0,SYSEIB,ASM,00000229
L800B AP E160 EXEC ENTRY GETMAIN AT X'26E0196C',514 AT X'A6E0195C',USERDATAKEY,SYSEIB,NOHANDLE,ASM,000
L800B AP E161 EXEC EXIT GETMAIN X'26E12B78' AT X'26E0196C',514 AT X'A6E0195C',USERDATAKEY,0,0,SYSEIB
L800B AP E160 EXEC ENTRY ADDRESS AT X'26E00050',AT X'A6E0AB90',NOHANDLE,PL/I,184.1
L800B AP E161 EXEC EXIT ADDRESS X'26E000D0' AT X'26E00050',X'23EA0730' AT X'A6E0AB90',0,0,NOHANDLE,PL
L800B AP E160 EXEC ENTRY GETMAIN AT X'26E00578',4080 AT X'A6E00568',USERDATAKEY,SYSEIB,NOHANDLE,ASM,00
L800B AP E161 EXEC EXIT GETMAIN X'26E12D98' AT X'26E00578',4080 AT X'A6E00568',USERDATAKEY,0,0,SYSEIB
L800B AP E160 EXEC ENTRY GETMAIN AT X'26E00578',4080 AT X'A6E00568',USERDATAKEY,SYSEIB,NOHANDLE,ASM,00
L800B AP E161 EXEC EXIT GETMAIN X'26E13D98' AT X'26E00578',4080 AT X'A6E00568',USERDATAKEY,0,0,SYSEIB
L800B AP 1949 APLI EVENT RETURN-FROM-LE/370 Rununit_Init_&_Begin_Invo OK DFHPIEP
L800B AP 1948 APLI EVENT CALL-TO-LE/370 Rununit_End_Invocation DFHPIEP
L800B AP 1949 APLI EVENT RETURN-FROM-LE/370 Rununit_End_Invocation OK DFHPIEP
L800B AP 1948 APLI EVENT CALL-TO-LE/370 Rununit_Termination DFHPIEP
L800B AP E160 EXEC ENTRY FREEMAIN AT X'A6E13D98',SYSEIB,NOHANDLE,ASM,00000404
L800B AP E161 EXEC EXIT FREEMAIN AT X'A6E13D98',0,0,SYSEIB,NOHANDLE,ASM,00000404
L800B AP E160 EXEC ENTRY FREEMAIN AT X'A6E12D98',SYSEIB,NOHANDLE,ASM,00000404
L800B AP E161 EXEC EXIT FREEMAIN AT X'A6E12D98',0,0,SYSEIB,NOHANDLE,ASM,00000404
L800B AP 1949 APLI EVENT RETURN-FROM-LE/370 Rununit_Termination OK DFHPIEP
L800B AP 1941 APLI EXIT START_PROGRAM/OK ,NO,DFHPIEP
L800B PI 0C16 PISN EXIT SOAP_PARSER 0,0,0
L800B PI 0C17 PISN ENTRY CALL_HEADERS
L800B PI 0C82 PISH DATA PROCESS-REQUEST 24FE15B0,FF00000024FE107D0000050924FE107E000000030000000824FE108224FE
L800B PI 0C82 PISH DATA PROCESS-REQUEST 24FE15B0,FF00000024FE107D0000050924FE107E000000030000000824FE108224FE
L800B PI 0C18 PISN EXIT CALL_HEADERS 1,0
 Chapter 9. Tracing the Change of Address scenario 239

4. CICS SOAP application driver
CICS now invokes program DFHPITP, which processes the incoming SOAP
message. The trace in Example 9-16 clearly shows the elements of the message
that are to be processed by the back end logic in ITSORA03.

Example 9-16 Soap elements for the Web service

L800B AP 1940 APLI ENTRY START_PROGRAM DFHPITP,NOCEDF,FULLAPI,EXEC,NO,2402BE00,00000000 , 00000000,3,NO
L800B AP 09F5 PITP ENTRY PROCESS_SOAP_REQUEST
L800B PI 1012 PITL DATA WSBIND_TIMESTAMP -200702010011
L800B AP 4800 CCNV ENTRY CREATE_CONVERSION_TOKEN 4B8,25
L800B AP 4801 CCNV EXIT CREATE_CONVERSION_TOKEN/OK 2601C170 , 00000000
L800B AP 4800 CCNV ENTRY CONVERT_DATA 4B8,25,24FDDAA8 , 00000000 , 000001E9,26E05A28 , 00000000 , 000007A4
L800B AP 4801 CCNV EXIT CONVERT_DATA/OK 24FDDAA8 , 000001E9 , 000001E9,26E05A28 , 000001E9 , 000007A4,2601C17
L800B AP 4800 CCNV ENTRY CREATE_CONVERSION_TOKEN 4B8,25
L800B AP 4801 CCNV EXIT CREATE_CONVERSION_TOKEN/OK 2601C170 , 00000000
L800B AP 4800 CCNV ENTRY CONVERT_DATA 4B8,25,24FDD778 , 00000000 , 00000303,26E061E8 , 00000000 , 00000C0C
L800B AP 4801 CCNV EXIT CONVERT_DATA/OK 24FDD778 , 00000303 , 00000303,26E061E8 , 00000303 , 00000C0C,2601C17
L800B PI 0F36 PICC DATA INBOUND_SOAP_BODY
L800B AP 4800 CCNV ENTRY CONVERT_DATA 4B8,25,22F08068 , 00000000 , 00000003,23EE6980 , 00000000 , 00000003
L800B AP 4801 CCNV EXIT CONVERT_DATA/OK 22F08068 , 00000003 , 00000003,23EE6980 , 00000003 , 00000003
L800B PI 0F3E PICC DATA SOAP_ELEMENT_START tns:Body
L800B PI 0F3E PICC DATA SOAP_ELEMENT_START NS1:ITSORA03Operation
L800B PI 0F3E PICC DATA SOAP_ELEMENT_START NS1:raca
L800B PI 0F3E PICC DATA SOAP_ELEMENT_START NS1:FirstName
L800B PI 0F3F PICC DATA SOAP_ELEMENT_END NS1:FirstName
L800B PI 0F3E PICC DATA SOAP_ELEMENT_START NS1:MiddleName
L800B PI 0F3F PICC DATA SOAP_ELEMENT_END NS1:MiddleName
L800B PI 0F3E PICC DATA SOAP_ELEMENT_START NS1:LastName
L800B PI 0F3F PICC DATA SOAP_ELEMENT_END NS1:LastName
L800B PI 0F3E PICC DATA SOAP_ELEMENT_START NS1:AddressHash
L800B PI 0F3F PICC DATA SOAP_ELEMENT_END NS1:AddressHash
L800B PI 0F3E PICC DATA SOAP_ELEMENT_START NS1:ClientId
L800B PI 0F3F PICC DATA SOAP_ELEMENT_END NS1:ClientId
L800B PI 0F3E PICC DATA SOAP_ELEMENT_START NS1:AddressLine1
L800B PI 0F3F PICC DATA SOAP_ELEMENT_END NS1:AddressLine1
L800B PI 0F3E PICC DATA SOAP_ELEMENT_START NS1:AddressLine2
L800B PI 0F3F PICC DATA SOAP_ELEMENT_END NS1:AddressLine2
L800B PI 0F3E PICC DATA SOAP_ELEMENT_START NS1:Suburb
L800B PI 0F3F PICC DATA SOAP_ELEMENT_END NS1:Suburb
L800B PI 0F3E PICC DATA SOAP_ELEMENT_START NS1:State
L800B PI 0F3F PICC DATA SOAP_ELEMENT_END NS1:State
L800B PI 0F3E PICC DATA SOAP_ELEMENT_START NS1:Postcode
L800B PI 0F3F PICC DATA SOAP_ELEMENT_END NS1:Postcode
L800B PI 0F3E PICC DATA SOAP_ELEMENT_START NS1:rc
L800B PI 0F3F PICC DATA SOAP_ELEMENT_END NS1:rc
L800B PI 0F3E PICC DATA SOAP_ELEMENT_START NS1:reason
L800B PI 0F3F PICC DATA SOAP_ELEMENT_END NS1:reason
L800B PI 0F3F PICC DATA SOAP_ELEMENT_END NS1:raca
L800B PI 0F3F PICC DATA SOAP_ELEMENT_END NS1:ITSORA03Operation
L800B PI 0F3F PICC DATA SOAP_ELEMENT_END tns:Body
L800B PI 0F37 PICC DATA OUTPUT_COMMAREA_DATA
240 Developing Web Services Using CICS, WMQ, and WMB

The Inbound SOAP body
The FULL trace entry in Example 9-17 shows that the inbound SOAP body is
displayed in the eyecatcher area of trace point ID PI 0F36.

Example 9-17 Trace of the inbound SOAP body

5. Invoke the back end program
Our service provider business logic is invoked. The trace entries in Example 9-18
show that the following actions are performed:

– Business logic ITSORA03 is started.

– Calls to DB2 to see if there is an entry for this client to perform this query
for new address details, to retrieve the address details, and to insert an
audit record.

Example 9-18 Invoking the service provider program ITSORA043

PI 0F36 PICC DATA - INBOUND_SOAP_BODY

 TASK-00212 KE_NUM-00E4 TCB-L800B/00799270 RET-A2F1F944 TIME-22:39:59.4887448779 INTERVAL-00.0008551230 =008342=
 1-0000 4CA395A2 7AC29684 A86E4CD5 E2F17AC9 E3E2D6D9 C1F0F3D6 97859981 A3899695 *<tns:Body><NS1:ITSORA03Operation*
 0020 6E4CD5E2 F17A9981 83816E4C D5E2F17A C68999A2 A3D58194 856EE388 969481A2 *><NS1:raca><NS1:FirstName>Thomas*
 0040 4C61D5E2 F17AC689 99A2A3D5 8194856E 4CD5E2F1 7AD48984 849385D5 8194856E *</NS1:FirstName><NS1:MiddleName>*
 0060 D14C61D5 E2F17AD4 89848493 85D58194 856E4CD5 E2F17AD3 81A2A3D5 8194856E *J</NS1:MiddleName><NS1:LastName>*
 0080 E681A3A2 96954C61 D5E2F17A D381A2A3 D5819485 6E4CD5E2 F17AC184 849985A2 *Watson</NS1:LastName><NS1:Addres*
 00A0 A2C881A2 886EF1F3 F8F7F6F6 F2F6F6F9 4C61D5E2 F17AC184 849985A2 A2C881A2 *sHash>1387662669</NS1:AddressHas*
 00C0 886E4CD5 E2F17AC3 93898595 A3C9846E F14C61D5 E2F17AC3 93898595 A3C9846E *h><NS1:ClientId>1</NS1:ClientId>*
 00E0 4CD5E2F1 7AC18484 9985A2A2 D3899585 F16E95A4 93934C61 D5E2F17A C1848499 *<NS1:AddressLine1>null</NS1:Addr*
 0100 85A2A2D3 899585F1 6E4CD5E2 F17AC184 849985A2 A2D38995 85F26E95 A493934C *essLine1><NS1:AddressLine2>null<*
 0120 61D5E2F1 7AC18484 9985A2A2 D3899585 F26E4CD5 E2F17AE2 A482A499 826E95A4 */NS1:AddressLine2><NS1:Suburb>nu*
 0140 93934C61 D5E2F17A E2A482A4 99826E4C D5E2F17A E2A381A3 856E95A4 93934C61 *ll</NS1:Suburb><NS1:State>null</*
 0160 D5E2F17A E2A381A3 856E4CD5 E2F17AD7 96A2A383 9684856E 95A49393 4C61D5E2 *NS1:State><NS1:Postcode>null</NS*
 0180 F17AD796 A2A38396 84856E4C D5E2F17A 99836E60 F14C61D5 E2F17A99 836E4CD5 *1:Postcode><NS1:rc>-1</NS1:rc><N*
 01A0 E2F17A99 8581A296 956E95A4 93934C61 D5E2F17A 998581A2 96956E4C 61D5E2F1 *S1:reason>null</NS1:reason></NS1*
 01C0 7A998183 816E4C61 D5E2F17A C9E3E2D6 D9C1F0F3 D6978599 81A38996 956E4C61 *:raca></NS1:ITSORA03Operation></*
 01E0 A395A27A C29684A8 6E *tns:Body> *

L800B AP 19A0 APLX ENTRY START_PROGRAM ITSORA03,CEDF,FULLAPI,EXEC,NO,2402BE44,26E06E08 , 000001DC,4,NO
X9000 DS 0010 DSBR ENTRY INQUIRE_TCB
X9000 DS 0011 DSBR EXIT INQUIRE_TCB/OK 22C16D40
X9000 AP E160 EXEC ENTRY ADDRESS AT X'A6714A30',NOHANDLE,C/370,00026300
X9000 AP E161 EXEC EXIT ADDRESS X'26E06E08' AT X'A6714A30',0,0,NOHANDLE,C/370,00026300
X9000 AP E160 EXEC ENTRY WRITEQ TS 'RA03 ' AT X'26712D64','Thomas
X9000 AP E161 EXEC EXIT WRITEQ TS 'RA03 ' AT X'26712D64','Thomas
X9000 AP 2520 ERM ENTRY C-APPLICATION-CALL-TO-TRUE(DSNCSQL)
L800B AP 3180 D2EX1 ENTRY APPLICATION REQUEST EXEC SQL SELECT
L800B AP 3250 D2D2 ENTRY DB2_API_CALL 24039330
L800B AP 3251 D2D2 EXIT DB2_API_CALL/OK
L800B AP 3181 D2EX1 EXIT APPLICATION-REQUEST SQLCODE 0 RETURNED ON EXEC SQL SELECT
X9000 AP 2521 ERM EXIT C-APPLICATION-CALL-TO-TRUE(DSNCSQL)
X9000 AP 2520 ERM ENTRY C-APPLICATION-CALL-TO-TRUE(DSNCSQL)
L800B AP 3180 D2EX1 ENTRY APPLICATION REQUEST EXEC SQL SELECT
L800B AP 3250 D2D2 ENTRY DB2_API_CALL 24039330
L800B AP 3251 D2D2 EXIT DB2_API_CALL/OK
L800B AP 3181 D2EX1 EXIT APPLICATION-REQUEST SQLCODE 0 RETURNED ON EXEC SQL SELECT
X9000 AP 2521 ERM EXIT C-APPLICATION-CALL-TO-TRUE(DSNCSQL)
X9000 AP 2520 ERM ENTRY C-APPLICATION-CALL-TO-TRUE(DSNCSQL)
L800B AP 3180 D2EX1 ENTRY APPLICATION REQUEST EXEC SQL INSERT
L800B AP 3250 D2D2 ENTRY DB2_API_CALL 24039330
L800B AP 3251 D2D2 EXIT DB2_API_CALL/OK
L800B AP 3181 D2EX1 EXIT APPLICATION-REQUEST SQLCODE 0 RETURNED ON EXEC SQL INSERT
X9000 AP 2521 ERM EXIT C-APPLICATION-CALL-TO-TRUE(DSNCSQL)
X9000 AP E160 EXEC ENTRY RETURN NOHANDLE C/370 00061200
X9000 DS 0010 DSBR ENTRY INQUIRE_TASK
X9000 DS 0011 DSBR EXIT INQUIRE_TASK/OK 24EAE030 , 00000003
L800B DS 0002 DSAT ENTRY RELEASE OPEN TCB 24EAE030 00000003
 Chapter 9. Tracing the Change of Address scenario 241

6. Sending a response to the client
CICS now builds a response and sends it back to the client using the same
pipeline. The trace entries in Example 9-19 show the response being sent.

Example 9-19 Sending a response to the client

L800B PI 0F06 PIII DATA OUTBOUND_COMMAREA_DATA
L800B PI 0F07 PIII DATA OUTBOUND_SOAP_BODY
L800B AP 4800 CCNV ENTRY CREATE_CONVERSION_TOKEN 25,4B8
L800B AP 4801 CCNV EXIT CREATE_CONVERSION_TOKEN/OK 2601C11C , 00000000
L800B AP 4800 CCNV ENTRY CONVERT_DATA 25,4B8,26E06FF8 , 00000000 , 00000376,250F3028 , 00000000 , 00000DD8
L800B AP 4801 CCNV EXIT CONVERT_DATA/OK 26E06FF8 , 00000376 , 00000376,250F3028 , 00000376 , 00000DD8,2601C11
L800B AP 09F6 PITP EXIT PROCESS_SOAP_REQUEST
L800B AP E160 EXEC ENTRY RETURN PLX 84500000
L800B AP 1941 APLI EXIT START_PROGRAM/OK ,NO,DFHPITP
L800B PI 0C17 PISN ENTRY CALL_HEADERS
L800B PI 0C82 PISH DATA SEND-RESPONSE FF000000,,,
L800B PI 0C82 PISH DATA SEND-RESPONSE FF000000,,,
L800B PI 0C18 PISN EXIT CALL_HEADERS 1,0
L800B AP 1941 APLI EXIT START_PROGRAM/OK ,NO,DFHPISN1
L800B PI 0A28 PIIS EVENT STATE T,B
L800B PI 0A2B PIIS EVENT FINAL_STATE B
L800B PI 0A40 PIIS EVENT FUNCTION_CNT SEND-RESPONSE
L800B PI 0A32 PIIS EVENT RESPONSE_CNT
L800B AP 4800 CCNV ENTRY VERIFY_IANA_CCSID UTF-8
L800B AP 4801 CCNV EXIT VERIFY_IANA_CCSID/OK 4B8
L800B AP 4800 CCNV ENTRY CONVERT_DATA 25,333,23E9FCB0 , 00000000 , 000000C9,23E9FCB0 , 00000000 , 000000C9
L800B AP 4801 CCNV EXIT CONVERT_DATA/OK 23E9FCB0 , 000000C9 , 000000C9,23E9FCB0 , 000000C9 , 000000C9
SO DS 0004 DSSR ENTRY WAIT_MVS SOCKET,24FA25A8,YES,IDLE,SEND
SO DS 0005 DSSR EXIT WAIT_MVS/OK
SO DS 0004 DSSR ENTRY WAIT_MVS SOCKET,24FA25A8,YES,IDLE,SEND
SO DS 0005 DSSR EXIT WAIT_MVS/OK
L800B PI 0A23 PIIS EXIT RUN 00000001,00000001
L800B DS 0004 DSSR ENTRY DELETE_SUSPEND 00770085
L800B DS 0005 DSSR EXIT DELETE_SUSPEND/OK
L800B AP 09D1 PIDSH EXIT SOAP_HTTP_INBOUND_ROUTER
L800B AP E160 EXEC ENTRY RETURN PLX 80500000
L800B AP 1941 APLI EXIT START_PROGRAM/OK ,NO,DFHPIDSH
242 Developing Web Services Using CICS, WMQ, and WMB

The Outbound SOAP body

The FULL trace entry for trace point ID PI 0F07 shows the outbound SOAP body
that is to be passed back to the client. This is seen in Example 9-20.

Example 9-20 The Outbound SOAP body

The CICS task is then terminated.

9.2.5 Return to the Client Broker on Windows

Having successfully called the CICS RetrieveAddress Web service, the
RetrieveAddressWithDB message flow resumes.

Example 9-21 RetrieveAddressWithDB MsgFlow Pt 2

Notice there is precious little trace output from the HTTPRequest node. This trace was take at DEBUG (max) level for a
user trace. More interesting information is returned in the HTTPResponse headers. The following is taken from a trace node
entry in the error log:

(0x01000000):HTTPResponseHeader = (
 (0x03000000):X-Original-HTTP-Status-Line = 'HTTP/1.0 200 OK'
 (0x03000000):X-Original-HTTP-Status-Code = 200
 (0x03000000):Server = 'IBM_CICS_Transaction_Server/3.1.0(zOS)'
 (0x03000000):Date = 'Thu, 22 Feb 2007 03:39:59 GMT'
 (0x03000000):Content-Length = '00001755'
 (0x03000000):Content-Type = 'text/xml; charset="UTF-8"'
)

This says nothing about the success or otherwise of the actuall w-s call, merely that CICS managed to invoke the w-s call
OK.

PI 0F07 PIII DATA - OUTBOUND_SOAP_BODY

TASK-00212 KE_NUM-00E4 TCB-L800B/00799270 RET-A2F20830 TIME-22:39:59.4970271616 INTERVAL-00.0008078750 =008528=
 1-0000 4CE2D6C1 D760C5D5 E57AC296 84A86E4C C9E3E2D6 D9C1F0F3 D6978599 81A38996 *<SOAP-ENV:Body><ITSORA03Operatio*
 0020 95D985A2 979695A2 8540A794 9395A27E 7F88A3A3 977A6161 A6A6A64B C9E3E2D6 *nResponse xmlns="http://www.ITSO*
 0040 D9C1F0F3 4BC9E3E2 D6D9C1C3 C14BD985 A2979695 A2854B83 96947F6E 4C998183 *RA03.ITSORACA.Response.com"><rac*
 0060 816E4CC6 8999A2A3 D5819485 6EE38896 9481A240 40404040 40404040 40404040 *a><FirstName>Thomas *
 0080 40404040 40404040 40404040 40404040 40404040 40404040 40404040 4040404C * <*
 00A0 61C68999 A2A3D581 94856E4C D4898484 9385D581 94856ED1 40404040 40404040 */FirstName><MiddleName>J *
 00C0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 00E0 40404040 40404040 404C61D4 89848493 85D58194 856E4CD3 81A2A3D5 8194856E * </MiddleName><LastName>*
 0100 E681A3A2 96954040 40404040 40404040 40404040 40404040 40404040 40404040 *Watson *
 0120 40404040 40404040 40404040 40404040 40404C61 D381A2A3 D5819485 6E4CC184 * </LastName><Ad*
 0140 849985A2 A2D38995 85F16EC9 C2D440C7 85969987 89814040 40404040 40404040 *dressLine1>IBM Georgia *
 0160 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 0180 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 01A0 40404040 40404040 40404040 4040404C 61C18484 9985A2A2 D3899585 F16E4CC1 * </AddressLine1><A*
 01C0 84849985 A2A2D389 9585F26E F140C199 87969581 A4A340E2 A3404040 40404040 *ddressLine2>1 Argonaut St *
 01E0 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 0200 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
 0220 40404040 40404040 40404040 40404040 4C61C184 849985A2 A2D38995 85F26E4C * </AddressLine2><*
 0240 E2A482A4 99826EE3 828993A2 89404040 40404040 40404040 40404040 40404040 *Suburb>Tbilsi *
 0260 40404040 40404040 40404040 40404040 40404040 40404040 404C61E2 A482A499 * </Subur*
 0280 826E4CE2 A381A385 6EC7C5D6 D9404040 4040404C 61E2A381 A3856E4C D796A2A3 *b><State>GEOR </State><Post*
 02A0 83968485 6EF1F1F1 F1F14040 4040404C 61D796A2 A3839684 856E4CC1 84849985 *code>11111 </Postcode><Addre*
 02C0 A2A2C881 A2886EF5 F2F7F8F1 F7F8F8F9 4C61C184 849985A2 A2C881A2 886E4CC3 *ssHash>527817889</AddressHash><C*
 02E0 93898595 A3C9846E F14C61C3 93898595 A3C9846E 4CD58194 85D98586 6EF04C61 *lientId>1</ClientId><NameRef>0</*
 0300 D5819485 D985866E 4C99836E F04C6199 836E4C99 8581A296 956ED6D2 6B409585 *NameRef><rc>0</rc><reason>OK, ne*
 0320 A6408184 849985A2 A2408485 A3818993 A240A2A4 97979389 85844C61 998581A2 *w address details supplied</reas*
 0340 96956E4C 61998183 816E4C61 C9E3E2D6 D9C1F0F3 D6978599 81A38996 95D985A2 *on></raca></ITSORA03OperationRes*
 0360 979695A2 856E4C61 E2D6C1D7 60C5D5E5 7AC29684 A86E *ponse></SOAP-ENV:Body> *
 Chapter 9. Tracing the Change of Address scenario 243

2007-02-22 14:40:01.664801 10140 UserTrace BIP4007I: Message propagated to 'out' terminal of node
'RetrieveAddressWithDB.Retrieve Address'.
2007-02-22 14:40:01.664942 10140 UserTrace BIP6060I: Parser type ''Properties'' created on behalf of node
'RetrieveAddressWithDB.Retrieve Address' to handle portion of incoming message of length 0 bytes beginning at offset '0'.
2007-02-22 14:40:01.665199 10140 UserTrace BIP6061I: Parser type ''HTTPResponseHeader'' created on behalf of node
'RetrieveAddressWithDB.Retrieve Address' to handle portion of incoming message of length '201' bytes beginning at offset
'0'. Parser type selected based on value ''WSRSPHDR'' from previous parser.
2007-02-22 14:40:01.665554 10140 UserTrace BIP6061I: Parser type ''MRM'' created on behalf of node
'RetrieveAddressWithDB.Retrieve Address' to handle portion of incoming message of length '1755' bytes beginning at offset
'201'. Parser type selected based on value ''MRM'' from previous parser.

The next node: "Check RC" for copies the input tree to the output tree then checks the results of the RetrieveAddress w-s
call and sets destination label to "RetrieveOK". Most of these trace entries document the copying of the message tree.

2007-02-22 14:40:01.665642 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Check RC': Executing statement
''DECLARE tns NAMESPACE 'http://schemas.xmlsoap.org/soap/envelope/';'' at ('.tns', '1.1').
2007-02-22 14:40:01.665694 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Check RC': Executing statement
''DECLARE resns NAMESPACE 'http://www.ITSORA03.ITSORACA.Response.com';'' at ('.resns', '1.1').
2007-02-22 14:40:01.665755 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Check RC': Executing statement
''DECLARE reqns NAMESPACE 'http://www.ITSORA03.ITSORACA.Request.com';'' at ('.reqns', '1.1').
2007-02-22 14:40:01.665799 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Check RC': Executing statement
''BEGIN ... END;'' at ('.RetrieveAddressWithDB_CheckRC.Main', '2.2').
2007-02-22 14:40:01.665843 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Check RC': Executing statement
''CopyMessageHeaders();'' at ('.RetrieveAddressWithDB_CheckRC.Main', '3.3').

Lots of trace entries assocated with copying headers edited out here for brevity.

RC': Executing statement ''CopyEntireMessage();'' at ('.RetrieveAddressWithDB_CheckRC.Main', '4.3').

Lots of trace entries assocated with copying message edited out here for brevity.

2007-02-22 14:40:01.668341 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Check RC': Executing statement
''IF InputRoot.MRM.resns:raca.resns:rc > 0 THEN... ELSE... END IF;'' at ('.RetrieveAddressWithDB_CheckRC.Main', '6.3').
2007-02-22 14:40:01.669765 10140 UserTrace BIP2543I: Node 'RetrieveAddressWithDB.Check RC':
('.RetrieveAddressWithDB_CheckRC.Main', '6.6') : Failed to navigate to path element number '3' because it does not exist.

Note: There is a bug in our ESQL :-)

2007-02-22 14:40:01.669821 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Check RC': Evaluating expression
''InputRoot.MRM.resns:raca.resns:rc'' at ('.RetrieveAddressWithDB_CheckRC.Main', '6.6'). This resolved to
''InputRoot.MRM.http://www.ITSORA03.ITSORACA.Response.com:raca.http://www.ITSORA03.ITSORACA.Response.com:rc''. The result
was ''NULL''.
2007-02-22 14:40:01.669952 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Check RC': Evaluating expression
''InputRoot.MRM.resns:raca.resns:rc > 0'' at ('.RetrieveAddressWithDB_CheckRC.Main', '6.39'). This resolved to ''NULL >
0''. The result was ''NULL''.

Still in the "Check RC" node here, this is the point where we set the name of the next label for the upcoming RouteToLabel
node:

2007-02-22 14:40:01.670009 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Check RC': Executing statement
''SET OutputLocalEnvironment.Destination.RouterList.DestinationData[1].labelname = 'RetrieveOK';'' at
('.RetrieveAddressWithDB_CheckRC.Main', '9.7').
2007-02-22 14:40:01.670075 10140 UserTrace BIP2566I: Node 'RetrieveAddressWithDB.Check RC': Assigning value
'''RetrieveOK''' to field / variable ''OutputLocalEnvironment.Destination.RouterList.DestinationData[1].labelname''.
2007-02-22 14:40:01.670125 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Check RC': Executing statement
''RETURN TRUE;'' at ('.RetrieveAddressWithDB_CheckRC.Main', '12.3').
2007-02-22 14:40:01.670217 10140 UserTrace BIP4007I: Message propagated to 'out' terminal of node
'RetrieveAddressWithDB.Check RC'.
244 Developing Web Services Using CICS, WMQ, and WMB

The RouteToLabel node behaves as expected:

2007-02-22 14:40:01.670321 10140 UserTrace BIP4241I: Message propagated to target Label node by RouteToLabel node
'RetrieveAddressWithDB.RouteToLabel'. A RouteToLabel node has received a message and is propagating it to the appropriate
Label node. No user action required.
2007-02-22 14:40:01.670349 10140 UserTrace BIP4220I: Message propagated to out terminal from node
'RetrieveAddressWithDB.RetrieveOK'.

The "RetrieveOK" label node takes control:

A label node has received a message and is propagating it to any nodes connected to its out terminal. No user action
required.

The last major processing step is to update the local CUSTOMER database with the new address details retrieve from the
RetrieveAddress CICS w-s call.

2007-02-22 14:40:01.670423 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Update Customer': Executing
statement ''DECLARE tns NAMESPACE 'http://schemas.xmlsoap.org/soap/envelope/';'' at ('.tns', '1.1').
2007-02-22 14:40:01.670472 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Update Customer': Executing
statement ''DECLARE resns NAMESPACE 'http://www.ITSORA03.ITSORACA.Response.com';'' at ('.resns', '1.1').
2007-02-22 14:40:01.670519 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Update Customer': Executing
statement ''DECLARE reqns NAMESPACE 'http://www.ITSORA03.ITSORACA.Request.com';'' at ('.reqns', '1.1').
2007-02-22 14:40:01.670564 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Update Customer': Executing
statement ''BEGIN ... END;'' at ('.RetrieveAddressWithDB_UpdateCustomer.Main', '2.2').
2007-02-22 14:40:01.670608 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Update Customer': Executing
statement ''UPDATE Database.ANDREWG.CUSTOMER SET ADDRESS1 = ..., ADDRESS2 = ..., SUBURB = ..., STATE = ..., POSTCODE =
..., HASH = ... WHERE ...'' at ('.RetrieveAddressWithDB_UpdateCustomer.Main', '3.3').
2007-02-22 14:40:01.671748 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Update Customer': Evaluating
expression ''Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:AddressLine1'' at
('.RetrieveAddressWithDB_UpdateCustomer.Main', '4.21'). This resolved to
''Root.MRM.http://schemas.xmlsoap.org/soap/envelope/:Body.http://www.ITSORA03.ITSORACA.Response.com:ITSORA03OperationRespo
nse.http://www.ITSORA03.ITSORACA.Response.com:raca.http://www.ITSORA03.ITSORACA.Response.com:AddressLine1''. The result
was '''IBM Georgia'''.
2007-02-22 14:40:01.671880 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Update Customer': Evaluating
expression ''Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:AddressLine2'' at
('.RetrieveAddressWithDB_UpdateCustomer.Main', '5.19'). This resolved to
''Root.MRM.http://schemas.xmlsoap.org/soap/envelope/:Body.http://www.ITSORA03.ITSORACA.Response.com:ITSORA03OperationRespo
nse.http://www.ITSORA03.ITSORACA.Response.com:raca.http://www.ITSORA03.ITSORACA.Response.com:AddressLine2''. The result
was '''1 Argonaut St '''.
2007-02-22 14:40:01.672003 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Update Customer': Evaluating
expression ''Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:Suburb'' at
('.RetrieveAddressWithDB_UpdateCustomer.Main', '6.17'). This resolved to
''Root.MRM.http://schemas.xmlsoap.org/soap/envelope/:Body.http://www.ITSORA03.ITSORACA.Response.com:ITSORA03OperationRespo
nse.http://www.ITSORA03.ITSORACA.Response.com:raca.http://www.ITSORA03.ITSORACA.Response.com:Suburb''. The result was
'''Tbilsi '''.
2007-02-22 14:40:01.672127 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Update Customer': Evaluating
expression ''Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:State'' at
('.RetrieveAddressWithDB_UpdateCustomer.Main', '7.16'). This resolved to
''Root.MRM.http://schemas.xmlsoap.org/soap/envelope/:Body.http://www.ITSORA03.ITSORACA.Response.com:ITSORA03OperationRespo
nse.http://www.ITSORA03.ITSORACA.Response.com:raca.http://www.ITSORA03.ITSORACA.Response.com:State''. The result was
'''GEOR '''.
2007-02-22 14:40:01.672245 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Update Customer': Evaluating
expression ''Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:Postcode'' at
('.RetrieveAddressWithDB_UpdateCustomer.Main', '8.19'). This resolved to
''Root.MRM.http://schemas.xmlsoap.org/soap/envelope/:Body.http://www.ITSORA03.ITSORACA.Response.com:ITSORA03OperationRespo
nse.http://www.ITSORA03.ITSORACA.Response.com:raca.http://www.ITSORA03.ITSORACA.Response.com:Postcode''. The result was
'''11111 '''.
2007-02-22 14:40:01.672371 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Update Customer': Evaluating
expression ''Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:AddressHash'' at
('.RetrieveAddressWithDB_UpdateCustomer.Main', '9.15'). This resolved to
''Root.MRM.http://schemas.xmlsoap.org/soap/envelope/:Body.http://www.ITSORA03.ITSORACA.Response.com:ITSORA03OperationRespo
 Chapter 9. Tracing the Change of Address scenario 245

nse.http://www.ITSORA03.ITSORACA.Response.com:raca.http://www.ITSORA03.ITSORACA.Response.com:AddressHash''. The result was
''527817889''.
2007-02-22 14:40:01.672448 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Update Customer': Evaluating
expression ''Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:FirstName'' at
('.RetrieveAddressWithDB_UpdateCustomer.Main', '10.26'). This resolved to
''Root.MRM.http://schemas.xmlsoap.org/soap/envelope/:Body.http://www.ITSORA03.ITSORACA.Response.com:ITSORA03OperationRespo
nse.http://www.ITSORA03.ITSORACA.Response.com:raca.http://www.ITSORA03.ITSORACA.Response.com:FirstName''. The result was
'''Thomas'''.
2007-02-22 14:40:01.672526 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Update Customer': Evaluating
expression ''Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:MiddleName'' at
('.RetrieveAddressWithDB_UpdateCustomer.Main', '11.25'). This resolved to
''Root.MRM.http://schemas.xmlsoap.org/soap/envelope/:Body.http://www.ITSORA03.ITSORACA.Response.com:ITSORA03OperationRespo
nse.http://www.ITSORA03.ITSORACA.Response.com:raca.http://www.ITSORA03.ITSORACA.Response.com:MiddleName''. The result was
'''J'''.
2007-02-22 14:40:01.672598 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Update Customer': Evaluating
expression ''Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:LastName'' at
('.RetrieveAddressWithDB_UpdateCustomer.Main', '12.23'). This resolved to
''Root.MRM.http://schemas.xmlsoap.org/soap/envelope/:Body.http://www.ITSORA03.ITSORACA.Response.com:ITSORA03OperationRespo
nse.http://www.ITSORA03.ITSORACA.Response.com:raca.http://www.ITSORA03.ITSORACA.Response.com:LastName''. The result was
'''Watson'''.
2007-02-22 14:40:01.672665 10140 UserTrace BIP2544I: Node 'RetrieveAddressWithDB.Update Customer': Executing
database SQL statement ''UPDATE ANDREWG.CUSTOMER SET ADDRESS1 = ?, ADDRESS2 = ?, SUBURB = ?, STATE = ?, POSTCODE = ?, HASH
= ? WHERE (((FIRSTNAME)=(?))AND((MIDDLENAME)=(?)))AND((LASTNAME)=(?))'' derived from
('.RetrieveAddressWithDB_UpdateCustomer.Main', '3.3'); expressions
''Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:AddressLine1,
Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:AddressLine2,
Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:Suburb,
Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:State,
Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:Postcode,
Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:AddressHash,
Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:FirstName,
Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:MiddleName,
Root.MRM.tns:Body.resns:ITSORA03OperationResponse.resns:raca.resns:LastName''; resulting parameter values '''IBM Georgia
', '1 Argonaut St ', 'Tbilsi
', 'GEOR ', '11111 ', 527817889, 'Thomas ', 'J
', 'Watson '''.
2007-02-22 14:40:01.673701 10140 UserTrace BIP2537I: Node 'RetrieveAddressWithDB.Update Customer': Executing
statement ''RETURN TRUE;'' at ('.RetrieveAddressWithDB_UpdateCustomer.Main', '13.3').
2007-02-22 14:40:01.673792 10140 UserTrace BIP4007I: Message propagated to 'out' terminal of node
'RetrieveAddressWithDB.Update Customer'.
2007-02-22 14:40:01.673874 10140 UserTrace BIP2539I: Node 'RetrieveAddressWithDB.Log Success': Evaluating
expression ''Root'' at ('', '4.3'). This resolved to ''Root''. The result was ''ROW... Root Element Type=16777216
NameSpace='' Name='Root' Value=NULL''.

And finally, the 'Success' trace node writes a record to the local error log indicating all is OK. The following "Error"
for trace entry 19003 is side-effect of our final Trace node which writes to the local error log (Event Viewer) with Event
ID 19003. The trace formatter doesn't understand this message. This can be safely ignored.

From the local error log showing this (partial) entry:

The description for Event ID (19003) in Source (WebSphere Broker v6002) could not be found. It contains the following
insertion string(s): .
AJGBROKER1.WSTest
'
Success !!

(
 (0x01000000):Properties = (
 (0x03000000):MessageSet = 'L849NPS002001'
 (0x03000000):MessageType = 'Envelope'
 (0x03000000):MessageFormat = 'XML1'
 :

2007-02-22 14:40:01.675413 10140 Error ?????????? 19003 ?????????? BIPv600.properties
246 Developing Web Services Using CICS, WMQ, and WMB

2007-02-22 14:40:01.675639 10140 UserTrace BIP4067I: Message propagated to output terminal for trace node
'RetrieveAddressWithDB.Log Success'.
 The trace node 'RetrieveAddressWithDB.Log Success' has received a message and is
propagating it to any nodes connected to its output terminal.
 No user action required.

End of Trace
 Chapter 9. Tracing the Change of Address scenario 247

248 Developing Web Services Using CICS, WMQ, and WMB

Appendix A. Additional material

This section refers you to additional material that can be downloaded from the
Internet.

Locating the Web material
The Web material associated with this book is available in soft copy on the
Internet from the IBM Redbooks Web server. Point your Web browser to the
following address:

ftp://www.redbooks.ibm.com/redbooks/SG247425

Alternatively, you can go to the IBM Redbooks Publications Web site at the
following location:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the IBM Redbooks form number, SG247425.

A

© Copyright IBM Corp. 2007. All rights reserved. 249

ftp://www.redbooks.ibm.com/redbooks/SG247425
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material
The additional Web material that accompanies this book includes the following
files:

File name Description
BrokerProject.zip PIF Exports of the Broker sources

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.
250 Developing Web Services Using CICS, WMQ, and WMB

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks Publications
For information about ordering these publications, see “How to get IBM
Redbooks” on page 262. Note that some of the documents referenced here may
be available in soft copy only.

� Application Development for CICS Web Services, SG24-7126

� Securing Access to CICS Within an SOA, SG24-5756

� Patterns: Service-Oriented Architecture and Web Services, SG24-6303

� Implementing CICS Web Services, SG24-7206

� CICS Transaction Server V3R1 Channels and Containers Revealed,
SG24-7227

Other publications
These publications are also relevant as further information sources:

� CICS Web Services Guide, SC34-6458-04

Online resources
The following Web sites are also relevant as further information sources:

� XML Standards reference

http://www.w3.org/XML/

� UDDI Standards

http://www.uddi.org/

� WDz Web site

http://www.ibm.com/software/awdtools/devzseries/
© Copyright IBM Corp. 2007. All rights reserved. 261

http://www.w3.org/XML/
http://www.uddi.org/
http://www.ibm.com/software/awdtools/devzseries/

How to get IBM Redbooks
You can search for, view, or download IBM Redbooks, Redpapers, Hints and
Tips, draft publications and additional materials, as well as order hard copy
Redbooks or CD-ROMs, at the following Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
262 Developing Web Services Using CICS, WMQ, and WMB

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Symbols
.NET 8

Numerics
3270 4
3270 screen in WD/z 76
64 bit addressing toleration 6

A
Access to CICS 6

enhanced HTTP support 6
Improved SSL support 6
support for mixed case passwords 6
Web services support 6

API to convert codepage 33
Application Functions 81

Add Address 83
Add/Update Address 85
Corporate Client Registration 82
Get Hash 81
List Corporate Acknowledgements 89
Return Codes 82
Standard Name 87

Application Schema 80
Mapsets/Maps 81
Programs 80
Transactions 80
WMQ Queues 81

Application transformation 6
ASCII 32
Assembler 8
Auxiliary Switch Status 215
Auxiliary Trace Dataset 215
Auxiliary Trace Status 215

B
BMS Editor 99
BMS map set JCL 102
BMS presentation logic 73
BMS(3270) screens ix, 2
Bottom-up development 68
Broker Administration 165
© Copyright IBM Corp. 2007. All rights reserved.
C
C++ 36
CECI Send Map 114
CEDA transaction 47, 49
CEMT INQUIRE WEBSERVICE 54
CETR 215
CETR Transaction 215
Change Of Address Application 8
Channels 26
channels 22
Channels and Containers 7, 25
CICS

BMS (3270) screens ix, 2
COBOL programs 70
COMMAREA programs 22
service requester 42

local optimization 44
terminal-oriented programs 22
Web services assistant 58

DFHLS2WS 59
DFHWS2LS 61

Web services support
development tools 58
resources 46
resources checklist 54

CICS as a service provider 40
CICS as a service requester 42
CICS interface (EXCI 25
CICS on System z 214
CICS read-only containers 31
CICS Resources 117

PIPELINE 117
TCPIPSERVICE 117
URIMAP 117
WEBSERVICE 117

CICS Web Interface with TCP/IP support 3
CICS Web services 1

WSDL ix, 2
CICS Web Services Assistant ix, 2
CICS Web Services Assistant. 2
CICSPlex SM 34
CICSPlex SM Business Application Services 49
client adapt or presentation logic 23
Client-Server 4
 263

COBOL 36, 58
COBOL Copy book 124
Coded Character Set Identifier (CCSID) 32
COMMAREA programs access 23
COMMAREAs 7
components of an SOA solution 13
CONFIGFILE 49
Container related API 31
Containers 30
containers 22
Converter driver 70
CPIH 42
CPIH transaction 42
Create a new Mapset 93
Create a Project 92

Click File > New > Project 92
Click Next 92
Select General > Project 92
Start up WD/z 92

CWXN 41

D
data access logic 23
Data conversion 32
Database Schema 78

ADDRESS (78
AUDIT (79
CORPCLIENTS(79
NAMES (79

debug the code 67
Deploying CICS applications 36
development tools 58
DFH$EXWS. 117
DFHCCNV conversion program 32
DFHCSDUP batch utility 47, 49
DFHDYPDS 34
DFHL3270 24
DFHLS2WS 35, 50, 59
DFHLS2WS JCL sample 59
DFHPITP 50
DFH-SERVICEPLIST 51
DFHUCNV user-replaceable conversion program
32
DFHWS2LS 35, 50, 61
DFHWS2LS JCL sample 61
DFHWS-APPHANDLER 50
DFHWS-DATA 44
DFHWS-WEBSERVICE 42

Drag-and-drop mappings 162
dynamic response 46
DYRLEVEL 34
DYRTYPE 34
DYRVER 34

E
EBCDIC 32
Eclipse Architecture 63

Help 63
Platform runtime 63
Team Support 63
Workbench 63
Workspace 63

Eclipse Platform 62
EDI solutions 3
enhanced C/C++ support 6
Enhanced inter-program data transfer 6
Enhanced Open Transaction Environment 6
Enterprise Service Tools 69
EXEC CICS ASSIGN CHANNEL 27
EXEC CICS CREATE PIPELINE command 49
EXEC CICS INVOKE WEBSERVICE 45
EXEC CICS LINK 34, 45
EXEC CICS START 34
EXEC CICS Web API commands 7
Extended Structured Query Language (ESQL) 162
eXtensible Style sheet Language for Transforma-
tions (XSLT) 162
external call interface (ECI) 25
external connector 24

F
Filter

 168
Formatting the Trace 216

G
GetHash WEBSERVICE resource 121

H
HFS directories 116

pickup directory 116
shelf directory 116

Hide Map Option 101
HTTP 5
264 Developing Web Services Using CICS, WMQ, and WMB

I
IBM WebSphere MQ Client, 182
IBM z/OS platform 11
Import the wsdl 190
Information Centre on an Eclipse based platform 6
Input converter 70
INQUIRE WEBSERVICE 37
integration logic 23
internal adapter 24
INVOKE WEBSERVICE 37

J
Java 162
Java Client using WAS 190
JCL for the Map Set 112
JES Job Filter 106
JMS 5, 8

L
LANG 60
Language Environment 7
Language Environment MAIN support for Assem-
bler 6
LINK 26
local optimization 44
LOGFILE 120

M
Map Object 100
Mapset created 95
Mapset name 94
Meet-in-the-middle development 68
Message Brokers Toolkit. 164
Message Flow on a System z Broker 210
Message handlers for SOAP 37
Message routing 160
Message Set editor 172
Message transformation and enrichment 161
Migrating COMMAREA to Channels and Containers
33

O
Open Transaction Environment (OTE) 7
Options

Join Shared, Add Name 168
Output converter 70

P
PDSLIB 59
PERFORM PIPELINE SCAN 48, 53
Persistence

Persistent 168
PGMINT 60, 120
PGMNAME 60, 120
PIPELINE 41, 46, 48, 117

attributes
CONFIGFILE 49
SHELF 48
WSDIR 48

pipeline 48
configuration file 49

pipeline alias transaction 47
PIPELINE for message handling 36
PIPELINE provider definition 118
PL/I 36
Project Explorer 92
Properties of a Web Service 14
Publication/Subscription facility 159
Publish/subscribe 161

R
Redbooks Web site 262

Contact us xi
Remote File System 130
REQMEM 60, 120
Request type

Subscription 168
RESPMEM 60, 120

S
sample job DFHLS2WS 120
Service Location 127
Service provider 13
Service registry 13
Service requester 13
service-oriented architecture (SOA) 7
SHELF 48
SOA and CICS 11
SOA on z/OS 21
SOAP 5, 18

validation in CICS 52
SOAP header 42
SOAPFAULT ADD | CREATE | DELETE 37
static response 46
Subscription Identity
 Index 265

Retrieve Address MsgFlow Example 168
Subscription Name

AddressChange 168
Subscription Point/Stream

AddressChange 168
Subscription Queue

CICSWSAP.ADDRESS.CHANGE 168
Subscription Queue Manager

AJGBRK1 168

T
TCP/IP 3
TCPIPSERVICE 41, 54, 117
TCPIPSERVICE definition. 41
terminal-oriented programs 24
Threadsafe Web API commands 6
Top-down development 68
Topic

CICSWSAP/AddressChange 168
trace through CICS 220
Tracing the Message Broker 217
Tracing the Web service on CICS 214
transaction (CSOL) 41
transaction CWXN 41
TSQ 35

U
UDDI 17, 19
URI 60, 120
URIMAP 41, 46, 117
URIMAP definition 121
URIMAP resource 41

V
VB Script 182
VBScript (short form of Microsoft Visual Basic
Scripting Edition) 182

W
WBI Adapters 5
WD/z BMS Editor 92
Web service 52
Web service requester 24
Web service standards 15

Business Processes 16
Description and Discovery 17
Management 16

Messaging 17
Reliability 16
Security 17
Transactions 17
Transports 18

Web service Usage Models 20
Web Services 14
Web services

assistant 58
binding file 54

Web services Atomic Transactions 17
Web services Business Activity 17
Web services co-ordination 17
Web Services Enablement wizard 70
Web services Federation Languages 17
Web services resource definitions 37
Web services Secure Conversation Language 17
Web services Security policy 17
Web services Trust 17
WEBSERVICE 41, 52, 117

attributes
VALIDATION 52
WSBIND 52
WSDLFILE 52

WebSphere Broker JMS Transport 160
WebSphere Developer for System z 115
Websphere Developer for System z. 57
WebSphere Developer for zSeries 61
WebSphere Message Broker 160, 162

components
Broker 163
Broker Administration perspective 164
Broker Application Development perspective
163
Broker domain 164
Configuration Manager 164
Development environment 162
Execution groups 163
Message flows 162
Runtime environment 163
User Name Server 164

componentsMessage sets 162
Websphere Message Broker 160
WebSphere Message Broker (WMB) 2, 8
WebSphere Message Broker (WMB), 8
WebSphere MQ 5
WebSphere MQ (WMQ) 8
WebSphere MQ Client software 181
WebSphere MQ Enterprise Transport 160
266 Developing Web Services Using CICS, WMQ, and WMB

WebSphere MQ Mobile Transport 160
WebSphere MQ Multicast Transport 160
WebSphere MQ Real-time Transport 160
WebSphere MQ Telemetry Transport 160
WebSphere MQ Web Services Transport 160
WMQ Client trigger 181
WS-Atomic Transaction 7
WSBIND 60, 120
WSDIR 48
WSDL ix, 2, 17, 19, 60
WS-security 7

X
XCTL 26
XML 14, 18
XML schema 52
XML Services for the Enterprise 69

Z
z/OS Assembler 8
 Index 267

268 Developing Web Services Using CICS, WMQ, and WMB

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Developing W
eb Services Using CICS, W

M
Q, and W

M
B

®

SG24-7425-00 ISBN 0738489239

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Developing Web Services
Using CICS, WMQ, and
WMB

Bottom-up
application design
and re-use of
traditional code

Exposing
applications as Web
services

Modern tooling
techniques

This IBM Redbooks publication provides a practical
demonstration of how to develop applications that take
advantage of CICS Web services facilities. This book can be
viewed as a follow-on from the IBM Redbooks publication
Application Development for CICS Web Services,
SG24-7126-00, with the addition of using modern tooling
techniques. Because we are creating a new application, we
follow the bottom-up approach described in Application
Development for CICS Web Services, SG24-7126-00.
Although not a requirement, we highly recommend that you
review that publication for a much deeper discussion of CICS
Web services development topics and alternative
approaches.

The primary purpose of this book is to demonstrate that well
structured CICS Web services are easy to develop using the
CICS Web Services Assistant. We also look at modern tooling,
such as WebSphere Developer for zSeries (WD/z).

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this Redbooks publication
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 Why we wrote this book
	1.2 Why use CICS Web services
	1.3 Application Development in CICS TS3.1
	1.3.1 Access to CICS
	1.3.2 Application transformation

	1.4 WebSphere Message Broker and WMQ
	1.4.1 WebSphere MQ (WMQ)
	1.4.2 WebSphere Message Broker (WMB)

	1.5 The Change of Address application

	Chapter 2. Service-oriented architecture and CICS
	2.1 An introduction to SOA
	2.2 Basic components of an SOA solution
	2.3 Web services
	2.3.1 Properties of a Web service
	2.3.2 Web service standards
	2.3.3 WS standards in CICS TS
	2.3.4 Implementing Web services

	2.4 Implementing SOA on z/OS
	2.5 Realizing that CICS assets can be SOA solutions
	2.6 Access to COMMAREA programs
	2.6.1 Access to terminal-oriented programs

	2.7 Channels and containers
	2.7.1 Advantages over COMMAREAs
	2.7.2 Channels
	2.7.3 Containers
	2.7.4 Data conversion
	2.7.5 Migrating COMMAREA to channels and containers

	2.8 Web services support in CICS TS V3.1
	2.8.1 Web services assistant utility
	2.8.2 Deploying CICS applications
	2.8.3 PIPELINE for message handling
	2.8.4 Message handlers for SOAP
	2.8.5 Web services resource definitions

	Chapter 3. CICS as a service provider and requester
	3.1 Overview of CICS as a service provider
	3.2 Inbound request processing
	3.3 Overview of CICS as a service requester
	3.4 Processing the outbound service request
	3.4.1 Local optimization

	3.5 CICS resources for Web services
	3.5.1 URIMAP
	3.5.2 PIPELINE
	3.5.3 WEBSERVICE
	3.5.4 TCPIPSERVICE
	3.5.5 Resources checklist

	Chapter 4. Modern Web services development tools
	4.1 Web services assistant in CICS TS 3.1
	4.1.1 Web services assistant utility programs

	4.2 WebSphere Developer for System z
	4.2.1 Introducing WebSphere Developer for System z
	4.2.2 The Eclipse platform
	4.2.3 The WebSphere Developer for System z Workbench
	4.2.4 z/OS application development tools in WD/z
	4.2.5 Web services development scenarios
	4.2.6 Enterprise Service Tools
	4.2.7 Web Services Enablement wizard

	Chapter 5. Development of the Change of Address CICS application
	5.1 Breakdown of the CICS application
	5.1.1 Overview of the approach to CICS application development
	5.1.2 Separation of presentation, business, and data logic
	5.1.3 Overview of the application
	5.1.4 Database schema
	5.1.5 Application schema
	5.1.6 Application functions

	5.2 Developing the presentation logic using the BMS Editor in WD/z
	5.2.1 Create a Project
	5.2.2 Create a new map set
	5.2.3 Designing the BMS map
	5.2.4 Creating additional maps

	5.3 Creating the BMS map set JCL
	5.3.1 Establish a connection to the host
	5.3.2 Filtering and data set mapping tasks
	5.3.3 Create a z/OS Project for the map set
	5.3.4 Import map sets into the z/OS Project
	5.3.5 Create the JCL for the map set
	5.3.6 Submit the JCL and test in CICS

	Chapter 6. Exposing our application as a Web service
	6.1 Configuration for Web service enablement
	6.1.1 Creating the HFS directories
	6.1.2 Creating the CICS Resources
	6.1.3 Generating the WSBind and WSDL files
	6.1.4 Installing the PIPELINE resource definitions
	6.1.5 Performing a scan on the PIPELINE
	6.1.6 Verifying the HFS structure just created

	6.2 Using WD/z to generate WSDL
	6.2.1 Importing the COBOL copy book
	6.2.2 Running the Web Services for CICS wizard
	6.2.3 Creating the CICS resources

	6.3 Testing the Web service

	Chapter 7. Configuring publication/subscription
	7.1 Introduction to WebSphere Message Broker
	7.1.1 Capabilities of WebSphere Message Broker
	7.1.2 Components of WebSphere Message Broker

	7.2 Establishing the pub/sub environment
	7.3 Creating the Hash Notification Message Set
	7.4 Creating the Publication Message Flow
	7.5 Testing the Publication Notification Message Flow
	7.6 Porting the Publication Notification Message Flow to System z Broker

	Chapter 8. Developing Web service clients
	8.1 Using VB Script
	8.1.1 VBScript Retrieve Address Query
	8.1.2 VBScript code overview
	8.1.3 VBScript Corporate Acknowledgement Query

	8.2 Generating a Java Client using WAS
	8.3 A client developed in WebSphere Message Broker
	8.3.1 Creating the RetrieveAddressWeb Message Flow

	Chapter 9. Tracing the Change of Address scenario
	9.1 Collecting the traces
	9.1.1 Tracing the Web service on CICS
	9.1.2 Tracing the Message Broker flow on distributed platforms
	9.1.3 Tracing the Message Broker flow on System z

	9.2 The annotated trace of the scenario
	9.2.1 The trace through CICS
	9.2.2 Tracing the Broker on System z
	9.2.3 Tracing the Broker on Windows
	9.2.4 Tracing the CICS Web service
	9.2.5 Return to the Client Broker on Windows

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	How to use the Web material

	Related publications
	IBM Redbooks Publications
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

