
TSO Tutorial

TSO is an acronym for Time Sharing Option, which is an accurate summation of the primary service that the

TSO feature provides. Time sharing allows the resources of the computer – CPU, memory, and datasets – to

be shared by all users by dividing up computer time into segments or slices. The program or command being

executed by each TSO user is allocated a single slice of time and then that user’s program is swapped out onto

paged storage and the next user is given their slice of computer resources. These time slices are extremely

small, but the cycle of swapping occurs so quickly relative to human time perception that it appears to each

user as though they are the only user of the computer’s resources.

TSO is a basic product component of MVS (and also MVT). The more recent versions of MVS (OS/390

and zOS, as well as the “for charge” versions of MVS) also provide an extension product, TSO/E

(TSO/Extensions), however the base component TSO is still present in these systems. TSO/E adds additional

facilities that are required for modern applications/utilities, such as ISPF and REXX, but much of the

functionality is provided by basic TSO. Therefore we can make use of many of the same functions on our

freely available Operating Systems (MVT 21.8f and MVS 3.8j) running under Hercules as are available on

zOS. A variety of tasks may be accomplished using basic TSO features:

create or modify data contained in datasets,

develop, test, and execute programs,

manage datasets and catalogs,

monitor and manage batch job facilities,

communicate with other TSO uses and system console operators,

use help facilities to learn about TSO commands,

create, edit, and execute TSO Command Lists (CLISTs).

My goal in writing this tutorial is to provide at least the minimum instruction required to begin using TSO to

perform the tasks shown above. As I wrote this tutorial I drew upon my own work experience using TSO for

a number of years in development environments. The basic outline for what I decided to include was

constrained by an an OS/VS2 TSO Command Language Reference Summary (IBM publication number

GX28-0647-3) from my library. All material presented in this tutorial has been verified under MVS 3.8j

running under Hercules (version 3.01) installed on Windows 2000. The 3270 terminal emulator I use is Tom

Brennan's Vista (version 1.24) and illustrations of command input and output are trimmed screen captures from

the terminal emulator window. The case of commands and operands typed during a TSO session is generally

irrelevant; however in this document I have capitalized commands and operands, or portions thereof, to

connote the required (or minimal) syntax required for recognition by TSO. The order in which I have chosen

to present TSO commands in this tutorial is that which seems most logical to me and is what I would deem

useful if I were using TSO for the first time. There is an Index at the bottom of this page which contains links

by which a number of topics may be rapidly accessed.

Although the TSO monitor program may be run as a batch process, it is designed to function as an interface

between the user, through a video display terminal, and the operating system. The actual management of the

display system input/output is handled for TSO by either VTAM (under MVS) or TCAM (under MVT). A

rudimentary security system is implemented by TSO, although in a production environment a more robust

security application would probably be active (RACF, ACF, or similar third party product). When a user logs

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 1/78

on to TSO through a terminal, an address space is created in which the user may execute programs, some

basic datasets are allocated for the user, and a VTAM session is initiated between the address space and the

user’s terminal.

TSO Security and Access Control

TSO provides a rudimentary security and access control implemented through the use of the TSO User

Attribute dataset (SYS1.UADS), which is created during System Generation. TSO User IDs are administered

(added, changed, and deleted) by using the Account TSO command. Access to the TSO system, and the

functions the user is allowed to complete once access is granted are controlled by settings in the profile of the

ID record in this dataset. Before any TSO commands may be entered, the LOGON command must be used

with a valid TSO User ID.

Logging On - LOGO� Command

In order to use TSO, a valid TSO User ID and password must be submitted to the TSO monitor via the

Logon TSO command. (The requirement of a password may be optional, depending upon settings specified

when the User ID was created.) The syntax of this command is:

LOGON <id>[/<password>] [other optional operands]

A standard User ID - IBMUSER - is always installed in the system during System Generation. To log onto

TSO using this User ID, you would type:

and press the ENTER key. Note: All TSO commands are entered into a terminal emulator client connected to

an address managed by either TCAM or VTAM (depending upon which is installed in your environment). If

you are logging on with an ID which requires a password, a slash (/) is entered immediately following the ID

and the password is typed immediately following the slash:

After successfully logging onto TSO, some system messages (which can vary from logon to logon) will be

displayed on your terminal followed by the TSO READY prompt:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 2/78

There are several optional operands that may be entered with the LOGON command. The ones which may be

of occasional use under Hercules/MVS 3.8j are SIZE, PROC, and ACCT.

The SIZE operand allows you to specify the amount of virtual memory to allocate to your TSO address space.

The integer value you provide with the SIZE operand indicates the amount of memory allocated to the virtual

region in which your TSO session will execute. The amount specified, less some overhead required for control

blocks used to manage your TSO session, becomes the maximum memory available for use by programs and

buffers during your session. To logon with the IBMUSER ID and allocate 4,000k region:

If you do not specify the SIZE operand, the default value used is the value stored in the User Attribute Dataset

for the User ID. Note: In the case of IBMUSER, the default (44k) is too small to provide the necessary

buffer space to access VSAM objects (which precludes the use of IDCAMs commands) - the reason for this

is that the IBMUSER ID is intended for emergency use only; not for productive work.

The PROC operand allows you to specify the name of a catalogued procedure to be used to allocate system

datasets for your TSO session. If you do not specify this operand, the default procedure used is the one that is

stored in the User Attribute Dataset for the User ID. If you have multiple logon procedures catalogued, you

may use the PROC operand to select the one to be used for a particular session. The default procedure

catalogued during System Generation is IKJACCNT.

The ACCT operand allows you to specify the accounting information that is written to SMF records created

during your TSO session. If used, up to 40 characters may be specified. The default string used is the one

stored in the User Attribute Dataset for the User ID.

Logging Off - LOGOFF Command

When you have logged onto TSO, the terminal remains connected to your TSO session until you terminate the

session with the LOGOFF command. The syntax of this command is:

LOGOFF

Although there are two optional operands, they are not relevant in the Hercules/MVS 3.8j environment. To

terminate your TSO session, simply type the command and press ENTER:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 3/78

The LOGOFF command releases system resources allocated to your address space, frees virtual memory and

terminates the address space. In order to issue further TSO commands, it is necessary to issue the LOGON

command again.

Note: If your terminal is allowed to remain idle for a period of time, MVS will automatically log your session

off.

The 3270 Display System

A typical 3270 display screen consists of 24 rows of 80 characters. The screen is divided into fields which

have specific characteristics, the most important of these determine whether the field is used for output --

characters written onto the screen by the active program -- or input -- characters typed by the terminal

operator (user). In the screen images captured for use in this tutorial, characters written to the screen by the

active program appear in red and characters typed by the terminal operator appear in green.

During a TSO session, information appears on the display as a conversation. Characters are typed by the user

and sent to the computer when an attention key is pressed. The computer responds to the input by writing

characters on the display screen; at the conclusion of the output the cursor remains positioned under the last

output and the keyboard is unlocked to await the next input from the operator. The process repeats with the

exchange progressing from the top of the screen until the bottom is reached. When the bottom of the screen is

reached, the TSO monitor writes three asterisks on the bottom line of the display screen:

This is a signal to let you know that more information is available in the current output from the computer than

will fit on the screen. To retrieve the additional output the ENTER key should be pressed; the screen will be

cleared and the output will resume at the top of the screen. If you are not interested in viewing additional

output from whatever command/program is executing, the output may be interrupted (see PA1 key description

in the next section).

If an input field is still visible on the display screen that closely matches information that is needed again, the

cursor position keys may be used to move the cursor from the current line back up to the prior input field. By

typing any character into the field area, the prior input field is tagged for transmission to the system the next

time an attention key is pressed. Any required changes to the input characters may be made before the

attention key is pressed:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 4/78

In this example, the prior input command -- listcat entry(sys1.proclib) -- is being changed by altering the

sys1 high level index to become sys2 (the cursor remains under the period following sys2 after the change).

When the ENTER key is pressed, the entire input field -- listcat entry(sys2.proclib) -- will be transmitted as

though it had been typed in its entirety following the prior output:

Attention Keys

The 3270 display terminal's interaction with TSO functions quite differently from what many people have come

to expect from their experience using a personal computer. When characters are typed on the screen by the

user, they are not read and processed by the computer as they are typed. Instead, they are held in a buffer in

the display terminal (or in the 3270 client, since it is unlikely that many in the Hercules' community are actually

utilizing a physical 3270 terminal). The accumulated characters are sent to the computer for processing only

when an attention key is pressed. The most frequently used attention keys are ENTER, CLEAR, and PA1.

The ENTER key, which may be the Carriage Return key (usually regarded as the ENTER key in the personal

computer world), provides the same function in TSO as in the personal computer world. On some 3270

clients, the ENTER key is mapped to an alternate key on the keyboard. In the Vista emulator, it is by default

mapped to the right CTRL key. When the ENTER key is pressed, all input fields tagged for transmission to

the computer for processing are sent as a single stream.

The CLEAR key performs exactly the function it describes -- the terminal screen and character buffer are

cleared. The CLEAR key is an attention key because input/output occurs to inform TSO that you have

cleared the screen and the output position maintained by the TSO monitor should be reset to the top of the

display screen. Since there is no CLEAR key on most personal computer keyboards, the function of the

CLEAR key is mapped to another key (or key combination). In the Vista emulator, it is by default mapped to

the PAUSE key.

The PA1 key (Program Access 1) interrupts the current command or program. When you press this key, the

current command or process is interrupted. If you are executing a subcommand, you will receive a prompt for

the parent command. If you are executing a command or program, you will receive a READY prompt. If you

want to resume the interrupted command (or subcommand), you may press the ENTER key. Since there is no

PA1 key on most personal computer keyboards, the function of the PA1 key is mapped to another key (or

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 5/78

PA1 key on most personal computer keyboards, the function of the PA1 key is mapped to another key (or

key combination). In the Vista emulator, it is by default mapped to CTRL-INSERT key combination.

Other attention keys that are less frequently used are PA2 (redisplay last screen sent from the computer) and

the Program Function Keys (1 through 24).

No data is transmitted to the computer from input fields, even if it is tagged, when the CLEAR, PA1, PA2, or

PA3 keys are pressed.

Although it is not an attention key, another key which is frequently useful is the RESET key. There are

circumstances in which your terminal keyboard becomes locked. For example, when you attempt to type

characters at a position where input is not permitted. You can use the RESET key to unlock your terminal

keyboard without generating an attention interrupt. Since there is no RESET key on most personal keyboards,

the function of the RESET key is mapped to another key (or key combination). In the Vista emulator, it is by

default mapped to the left CTRL key.

Command Syntax

TSO Commands are free form and consist of a command name which may be followed by one or more

parameters (which I have tried to consistently refer to hereafter as operands in this document). Examples of

this can be seen in the description of the LOGON and LOGOFF commands described above. Operands may

be either positional or keyword. In the LOGON command, the User ID is a positional operand. The operand

is recognized as the User ID by the fact that it is entered immediately following the LOGON command. The

SIZE operand is a keyword operand -- it is recognized by the inclusion of the keyword SIZE and the value

given for the operand is typed enclosed in parenthesis following the keyword.

TSO employs a liberal abbreviation policy for its commands and keyword operands. Any command (or

keyword operand) may be abbreviated to the shortest form that eliminates ambiguity. As long as TSO can

differentiate the command (or operand) you are typing from similar commands (or operands in the same

context), it will accept the command you intend. Some examples:

Command Acceptable Abbreviations

DELETE DEL

LISTCAT LISTC

EDIT E

SUBMIT SUB

User Profile - PROFILE Command

Some behavior of a user's TSO session is determined by settings that are maintained in the user profile. These

settings persist from logon to logon. They are initially set to defaults when the User ID is created. If they are

subsequently changed by use of the PROFILE command, the new settings specified will remain in effect until

they are changed again. The settings are displayed and changed with the PROFILE command (which may be

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 6/78

abbreviated PROF). The syntax of this command is:

PROFile [zero or more optional operands]

To display the current settings, type the command with no operands and press ENTER:

Some of the settings maintained in the profile originate from when line mode (non-display) terminals were in

wide use and will not be utilized in a 3270 environment. Probably the most significant setting in the user profile

is PREFIX.

When specifying datasets in a TSO session, a dataset name may be supplied as fully qualified or not. If you

supply a fully qualified dataset name, you supply the entire name and enclose it in single apostrophes:

If you omit the apostrophes, TSO will supply additional qualifiers for the dataset name. The most significant of

these is the high level qualifier (located at the left most position of the name), which will be taken from the prefix

setting of your user profile:

As you see in the example above, the user ID - JAY01 - has been prepended to the portion of the dataset

name entered by the user - merge1.data - to form the complete dataset name used by the command -

jay01.merge1.data.

The prefix is usually set to your User ID. Typically your User ID is set up as an alias to a User Catalog in

order to exert some control over where datasets are cataloged (and thus prevent extraneous user datasets from

being cataloged in the Master Catalog). With the prefix set to your User ID, it ensures that datasets you create

during your TSO session will be cataloged in the appropriate User Catalog. There are two circumstances in

which you might want to temporarily change the prefix --

when you intend to specify a number of system datasets and don't wish to remember to enclose them in

apostrophes, and

when you intend to specify a number of datasets that consistently use an identical high level qualifier

(other than your TSO User ID).

In order to remove the prefix, you use the NOPREFIX operand of the PROFILE command:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 7/78

In order to remove the prefix, you use the NOPREFIX operand of the PROFILE command:

After setting the profile to noprefix, subsequent dataset names not enclosed in apostrophes will have no high

level qualifier prepended to them. To again set the prefix (either to your User ID or some other relevant value),

use the PREFIX operand of the PROFILE command:

Other settings in the user profile that might be useful to a typical user include PAUSE, MSGID, and

WTPMSG, but I will not be discussing them here. To obtain more information use the HELP PROFILE

command.

TSO Help System

TSO conveniently provides a HELP command that may be used to obtain information about the function,

syntax, and operands of commands and subcommands. The source of this information is contained in the

members of the partitioned dataset SYS1.HELP, which is created during System Generation. (It is a

convention followed by many Systems Programmers to place help text for user written commands in a

secondary dataset -- SYS2.HELP -- which is also accessed by the HELP command.)

The syntax of this command is:

HELP [zero or more optional operands]

The HELP command with no operands displays a list of valid commands (note that this list is produced solely

from SYS1.HELP so it will not include user commands for which help text resides in SYS2.HELP unless it has

been specifically updated to do so). To obtain additional information about a particular command, enter the

HELP command and specify the name of the command for which you want additional information displayed as

an operand. The following overlapped screen captures shows the first two screens of output produced by the

HELP command with no operands and the first portion of the output of the HELP command with LISTCAT

specified as an operand:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 8/78

For the specified command, you will be shown a brief description of the function(s) of the command, the syntax

of the command, and a description of each operand. Keyword operands for the HELP command --

FUNCTION, SYNTAX, OPERANDS -- may be specified to limit the output displayed by the HELP

command. FUNCTION limits the output displayed to the description of the function; SYNTAX limits the

output displayed to the syntax required for the command, and OPERANDS limits the output displayed to the

operands available for the command. OPERANDS will also accept one or more keywords specified in

parentheses to request information on specific operands:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 9/78

Managing Datasets and Catalogs

TSO most closely resembles the Command Line environment of Linux or Windows, in that it provides a rich

set of commands that may be used to investigate and modify the environment accessible by the user from their

TSO session. In fact, almost the entire set of IDCAMS commands (the VSAM Access Methods Services

utility) may be executed directly from the TSO session prompt to manipulate Catalogs, Datasets, Aliases, and

other VSAM objects. The following section describes some of the basic data management tasks that may be

accomplished from the TSO session.

Displaying Catalog Information - LISTCAT Command

The LISTCAT command (which may be abbreviated LISTC) is one of the most frequently used TSO

commands. It is used to list information contained in the Master and User Catalogs of the system for Non-

VSAM datasets and VSAM objects. The syntax of this command is:

LISTCAT [zero or more optional operands]

Issued with no operands, the command will use the current value of the prefix from the User's profile to list

catalogued datasets for that user:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 10/78

The first line of the output shown in the session above indicates that the User ID prefix has been used to select

the User Catalog - UCJAY001 - based upon the prefix value - JAY01 (this association is specific to this

particular User ID on my system and will differ on other systems). The second and following lines are the

datasets from this catalog in which the high level qualifier match the prefix. There may be additional datasets

(as well as other VSAM objects) catalogued in the User Catalog that are excluded from this list, which is

illustrated by setting the prefix to null and listing the contents of the User Catalog by specifically selecting the

catalog to be listed:

Frequently the goal will be to have a smaller, more relevant, list returned by the LISTCAT command instead of

having all objects included from the catalog that match the User ID prefix. Two operands allow you to limit the

information selected - ENTRIES and LEVEL (which may be abbreviated to ENT and LVL, respectively).

ENTRIES is used to limit the information returned to that for specific objects named in parentheses following

the operand. Usually this operand is used to return information for a single object:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 11/78

If the value you specify for the ENTRIES operand is ambiguous (more than one object in the catalog matches

the value you enter, but with different lower level qualifiers), you will be prompted with a list of those lower

level qualifiers so that you may specify which qualifier is to be used to complete the execution of the command:

In order to list a group of objects from the catalog matching a specified qualifier level, you use the LEVEL

operand:

Because you are specifying the high level qualifiers to be used to filter the output returned, the prefix value is

not relevant when the LEVEL operand is used. However, the prefix value is still used to select the User

Catalog from which the entries are listed.

Other operands may be specified to designate the exact user catalog from which listings are made and the type

of objects to be listed:

To learn more about the LISTCAT command, enter HELP LISTCAT at the TSO READY prompt.

Displaying Dataset Attributes - LISTDS Command

The LISTDS command (which may be abbreviated LISTD) is used to list attributes of Non-VSAM datasets.

The syntax of this command is:

LISTDS [zero or more optional operands]

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 12/78

LISTDS [zero or more optional operands]

If the command is entered with no operands, you will be prompted for a dataset name; however, it is typical

practice to enter the name of the dataset for which attributes are to be listed as an operand of the command:

You may list more than one dataset by replacing one or more levels of qualification in the dataset name with an

asterisk (*):

The attributes listed by default for the specified dataset include Record Format (RECFM), Logical Record

Length (LRECL), Block Size (BLKSIZE), Dataset Organization (DSORG), and the Volume Serial identifier(s)

on which the dataset resides. Additional attributes may be displayed by including additional operands; a

frequently used operand - MEMBERS - will return a list of the members for partitioned datasets:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 13/78

To learn more about the LISTDS command, enter HELP LISTDS at the TSO READY prompt. You might

also want to investigate the DD command from the CBT Tape.

Renaming a Dataset - RE�AME Command

The RENAME command (which may be abbreviated REN) is used to rename either a physical sequential

dataset or a member of a partitioned dataset. The RENAME command may not be used to rename a VSAM

object (you must use the IDCAMs ALTER command to accomplish that). The syntax of the RENAME

command is:

RENAME [zero or more optional operands]

The name of the dataset is changed in both the VTOC and the catalog in which the dataset is cataloged.

If the command is entered with no operands, you will be prompted first for the name of an existing dataset

which is to be given a new name, followed by the new name the dataset is to be given. However, the typical

practice is to enter both the old and new names for the dataset as operands of the command:

In the session above the RENAME command is preceded and followed by a LISTCAT command to show the

catalog entries for the dataset before the RENAME command is entered and after. Note that for a successful

RENAME operation, there is no output produced for the command.

The RENAME command may also be used to rename members of a partitioned dataset. In that context, the

operands given for both the old and new dataset name must include the name of a single member of a

partitioned dataset:

Instead of modifying the name of the dataset in the VTOC and catalog, the name of the member is changed in

the directory of the partitioned dataset.

Another optional operand - ALIAS - may be specified for partitioned datasets and is used to create a new

directory entry for an existing member of the dataset while leaving the original directory entry intact. This new

entry, or alias, may then be used to access the contents of the member interchangeably with the original

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 14/78

entry, or alias, may then be used to access the contents of the member interchangeably with the original

member name:

In the session above the LISTDS command is used following the RENAME command to show that an alias

has been created - prime1a - for the existing member prime. Either member name, prime or prime1a, may

now be used to access the contents of the member.

Deleting a Dataset - DELETE Command

The DELETE command (which may be abbreviated DEL) is used to delete either VSAM objects or non-

VSAM datasets from the and VTOC and free the space occupied by their contents for reuse. The syntax of

this command is:

DELETE <object or dataset name> [optional operands]

The most common use of the DELETE command is to remove a non-VSAM dataset that is no longer

required. By default, the command removes both the catalog entry for the dataset and the VTOC entry,

freeing the space that was used by the dataset for reuse. An optional operand - NOSCRATCH - may be

specified to remove the catalog entry while retaining the dataset contents and its entry in the VTOC.

The outcome of the DELETE command in the session above is the removal of the catalog entry for the

specified dataset. The entry for the dataset remains in the VTOC and the contents of the dataset remain intact

on the DASD volume. If the noscratch operand is omitted, the default action, scratch, is in effect:

The entry for the dataset is removed from the VTOC and the space formerly occupied by the contents of the

dataset are available for reuse. Note that the output from the command is identical regardless of the

scratch/noscratch specification.

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 15/78

scratch/noscratch specification.

The DELETE command may also be used to remove VSAM objects:

In the session shown above, the VSAM object specified for deletion was a VSAM cluster. The

subcomponents of the cluster, the data and index objects, were deleted before the cluster object.

Another operand that may be used frequently is PURGE. The opposite of this operand, which is the default, is

NOPURGE and specifies that the object will not be deleted if the expiration date specified when the object

was created has not yet been reached. Specifying the PURGE operand overrides the expiration date, allowing

the object to be deleted anyway.

As shown in the session above, if DELETE is specified for an object which has an expiration date that has not

yet passed, an error message is issued and the object is not deleted. Adding the PURGE operand to the

delete command causes the deletion to proceed regardless of the expiration date.

Creating and Modifying Data - EDIT Command

The EDIT command (which may be abbreviated E) is used to create and modify data contained in user

datasets. It has very basic capabilities and in the real world has mostly been replaced by ISPF. In the

Hercules/MVS3.8j community, a much more robust editor exists in RPF, which provides an editor that is much

like ISPF. However, there are times when EDIT is all that is available and can save the day. I am only going

to cover the very basics of EDIT as it is most likely you will be using RPF if you regularly create or edit data

under TSO.

The most basic syntax of the EDIT command is:

Edit <dataset>(<member>) [<type>] [OLD | NEW]

Dataset and member specify the partitioned dataset and member that is to be edited. EDIT can modify

physical sequential datasets, but the majority of its use is in maintaining source code or JCL libraries (another

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 16/78

physical sequential datasets, but the majority of its use is in maintaining source code or JCL libraries (another

name used frequently to refer to partitioned datasets).

Type specifies the type of records contained in the dataset and is used by the EDIT command to interpret

where sequence numbers can be expected. Some valid types are:

CNTL - used for Job Control Language

COBOL

PLI

DATA

TEXT

ASM

CLIST

Old or New designate whether the dataset (or member if editing a partitioned dataset) already exists or is being

created. Usually this operand can be omitted as EDIT will make the correct assumption based upon the

existence of the dataset (or member) when EDIT is invoked.

If the dataset name is specified without enclosing quotes (ie. is not qualified), EDIT will attempt to use the last

qualifier of the dataset name to determine the type of records contained in the dataset:

If the dataset name is enclosed in quotes and the dataset type is omitted (or EDIT is unable to determine a

valid type from the dataset name), EDIT will prompt for the type:

Two Modes of Operation - Input or Edit

EDIT operates in two basic modes - INPUT or EDIT. The initial mode is determined by whether the data

being edited is NEW or OLD. As shown above, since the member - iefbr14 - already exists, the initial mode

is EDIT, which is indicated by the prompt. If the data being edited is NEW, the initial mode is INPUT:

In INPUT mode, the sequence number for the next available data record is displayed and the cursor is

positioned at the beginning of the record awaiting input of the data for the next record to be typed.

The mode is switched between EDIT and INPUT by pressing ENTER at the prompt without typing any other

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 17/78

The mode is switched between EDIT and INPUT by pressing ENTER at the prompt without typing any other

characters.

EDIT is line mode oriented, since it dates from the time when line mode terminals were the majority of devices

in use. The commands you enter will identify one or more lines to which they will be applied. The current line

in the dataset you are editing is referenced by the current line pointer, which is specified with an asterisk (*)

when it is referenced in EDIT subcommands.

Displaying Current Dataset Contents - LIST Subcommand

To display the data currently existing in a dataset, use the LIST subcommand:

LIST [{<starting line sequence number> [<ending line sequence number>] |

 * [number of lines] }

If no operands are included, the entire dataset is listed. If the dataset is large, this can result in numerous

screens of output. A single line can be displayed by specifying either the line sequence number or the current

line pointer (*). A range of lines may be displayed by specifying either a starting and ending sequence number

pair or the current line pointer and a number designating the number of lines to display. Examples of each of

these options are shown below:

Inserting �ew Lines - I�PUT Subcommand and Input Mode

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 18/78

To insert lines, the mode must be switched to INPUT. If you press ENTER without typing anything when you

are in EDIT mode, you will be placed in INPUT mode and the lines typed will be added at the next available

line number (usually the end of the dataset). If you use the INPUT subcommand and specify a line number, the

lines are added at the position indicated by the line number you have specified. The syntax of the INPUT

subcommand is:

INPUT <line sequence number> [<increment>]

The line sequence number operand specifies the line number at which the first new line is to be inserted. The

optional increment operand specifies the value to be used to increment the line sequence number for

subsequent lines.

After all new lines have been entered, the mode is switched back to EDIT by pressing ENTER without typing

any additional characters at the input prompt. When inserting new lines between existing lines of a dataset, you

must have enough unused line numbers to accommodate the new lines you are adding. When all available

sequence numbers have been added, an error message will be displayed and the mode will switch back to

EDIT. In order to insert additional lines when you have used all available sequence numbers, you must

RENUMber the dataset.

Renumber Sequence �umbers in the Dataset - RE�UM Subcommand

The RENUM subcommand (which may be abbreviated REN) is used to renumber the lines of a dataset in

order to make room for additional new records. The syntax of RENUM is:

RENum [beginning sequence number] [increment]

The beginning sequence number operand specifies sequence number to be assigned to the first line of the

dataset. If omitted it defaults to the value 10. The increment operand specifies the value to be added to each

previous sequence number to derive the sequence number of each successive line. If omitted, the increment

value will default to the value 10.

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 19/78

The session above includes a LIST subcommand to show the dataset before executing the RENUM

subcommand, the RENUM subcommand specifying a starting sequence number of 0 and an increment value of

100, and another LIST subcommand showing the dataset with the new sequence numbers.

Deleting Records from the Dataset - DELETE Subcommand

The DELETE subcommand (which may be abbreviated DEL) is used to remove records from the dataset.

The syntax of the subcommand is:

DELete { [starting sequence number] [ending sequence number] |

 [*] [count of records to delete] }

Like the LIST subcommand, the optional operands may be specified using sequence numbers of records in the

dataset or by reference to the current line pointer. If no operands are included, the record referenced by the

current line pointer is deleted. If a single sequence number is included, the record containing that sequence

number is deleted. If a beginning and ending sequence number are included, the records containing those

sequence number and all records located between them are deleted. More than a single record may also

be deleted using the current line pointer by including the current line pointer indicator, an asterisk (*), followed

by an integer indicating the total number of records to delete.

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 20/78

The three sessions above illustrate, from left to right, deleting a single record using the current line pointer (after

the deletion the current line pointer moves to the preceding line), deleting records with sequence numbers 100

through 900, and deleting eight records beginning with the current line pointer referencing record number three.

Repositioning the Current Line Pointer

Four subcommands are provided to allow you to reposition the current line pointer:

TOP - moves the current line pointer to the first record in dataset

BOTTOM - moves the current line pointer to the last record in dataset

UP [count] - moves the current line pointer the number of records specified towards the beginning of the

file (if count is not specified, the default is 1)

DOWN [count] - moves the current line pointer the number of records specified towards the end of the

file (if count is not specified, the default is 1)

The subcommands used to reset the location of the current line pointer are most often used in conjunction with

the FIND and CHANGE subcommands.

Verifying Current Line Pointer and Changes

A subcommand that is very useful when doing FIND and CHANGE subcommands is VERIFY (which may be

abbreviated V). The syntax of the subcommand is:

Verify [ON | OFF]

The subcommand changes the verify setting for the current edit session. When Verify is on, each time the

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 21/78

The subcommand changes the verify setting for the current edit session. When Verify is on, each time the

current line pointer is changed or changes are made to a dataset record, the record is displayed. With Verify

set to off, the records are not displayed.

Finding Records Using Content - FI�D Subcommand

The FIND subcommand (which may be abbreviated F) is used to search for a specified character string in the

records of the dataset. The search begins with the current line. If the string is found the current line pointer is

left positioned at the first record that contained the string being searched for. If the string is not found, the

current line pointer is left positioned at the last record in the dataset. The syntax of the subcommand is:

Find <character string> [<position>]

The character string operand may be delimited by any non-numeric character which does not appear within the

specified character string, except blank, comma, tab, parenthesis, asterisk, apostrophe, or semicolon.

If the optional position operand is specified, each record is tested for the specified character string only

beginning at the specified character position. If omitted, each character position of each record is tested for the

presence of the character string.

After executing a FIND subcommand, the same search may be repeated without respecifying the character

string by entering the subcommand with no arguments.

If the FIND subcommand does not find the specified character string, the message TEXT NOT FOUND will

be displayed.

The session above illustrates a FIND subcommand using the forward slash (/) as a delimited of the character

string to be searched for. Following the first execution, LIST is used to display the record which satisfied the

search. A second FIND command with no operands continues the search using the same string; the second

search begins with the record following the one which satisfied the previous search. Again LIST displays the

record where the search was satisfied. A third execution of FIND results in the string not being found.

Changing Contents of Records - CHA�GE Subcommand

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 22/78

The CHANGE subcommand (which may be abbreviated C) is used to modify a character string in one record,

or a range of records, in the dataset. The syntax of the subcommand is:

Change <line specification> <change specification> [ALL]

The <line specification> may be one of the following:

current line pointer (*) to limit the search to the current record

current line pointer and <count> to limit the search to the range of lines consisting of the current record

plus the following number of records indicated by the specified <count>

<single sequence number> to limit the search to a specified record

<beginning sequence number> and <ending sequence number> to limit the search to the range of lines

consisting of the records containing the specified sequence numbers and the records between them.

 The <change specification> is a pair of character strings, delimited and separated by a unique delimiter

character. The delimiters may be any non-numeric character which does not appear within the specified

character strings, except blank, comma, tab, parenthesis, asterisk, apostrophe, or semicolon. Some examples:

/VOL=SER=MVSRES/VOL=SER=SMP001/

search for VOL=SER=MVSRES; if

found change to

VOL=SER=SMP001

%DSORG=PS%DSORG=PO%
search for DSORG=PS; if found

change to DSORG=PO

=//SYSGEN06=//SYSGEN6A=
search for //SYSGEN06; if found

change to //SYSGEN6A

/RETAIN//
search for RETAIN; if found remove

it

Note in the last example: if the second string is omitted, the first string, if found, is removed from the record.

If the third operand, ALL, is specified, all occurrences of the search string found are replaced. If ALL is

omitted only the first occurrence will be replaced.

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 23/78

Saving Changes

All changes made to the dataset during the Edit session are made in a work space. In order to write the

changes back to the dataset, you must specify the SAVE subcommand (which may be abbreviated S). The

syntax of the subcommand is:

Save [<dataset name>]

If the optional <dataset name> operand is included, the changes are written to this dataset rather than to the

dataset specified at the beginning of the edit session.

The Save subcommand may be issued any number of times during the edit session to provide a snapshot of

changes up to that point in the session.

Terminating a Edit Session

To terminate the edit session, the END subcommand is used. If there have been changes made to the work

space without issuing a SAVE subcommand, you will be prompted to SAVE the changes or lose them. You

can use one of the optional operands for the END subcommand to explicitly SAVE or abandon the changes

you have made:

END SAVE - saves changes made to the dataset and ends the session

END NOSAVE - abandons changes made to the dataset and ends the session

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 24/78

Develop, Test, and Execute Programs

In my professional experience, other than maintenance of the MVS Operating System, the main use of TSO

has been the development and testing of user programs for eventual use in a production environment. Since

just about everything that happens during a TSO session involves the execution of a program, it goes without

saying that TSO is designed for executing programs in the time shared environment. So in this section I will

discuss some of these aspects of using TSO.

In a typical real world environment, every TSO user has allocated for their personal use a set of partitioned

datasets, usually referred to as libraries. These libraries contain source code for programs in a variety of

languages, job control language for running batch jobs, collections of data for testing programs, etc. The

structure of dataset names in MVS isn't just a random arrangement; by design the naming structure fits and

supports the TSO user's environment. An MVS dataset name is composed of one or more qualifiers

separated by periods. Each qualifier consists of one to eight characters (A through Z, 0 through 9, or national

characters - #, $, @), and the first character of each qualifier may not be numeric. The length of the entire

dataset name, composed of the individual qualifiers separated by periods, must not exceed 44 characters.

By convention, the first qualifier of a TSO User's dataset consists of the TSO User ID. The second qualifier is

chosen to designate a project or function as a means of collecting related groups of data together. The third

qualifier designates the type of data contained in the dataset. Of course, in a real world environment where

ISPF is being used, there could easily be more than three qualifiers, but the convention of first and last

indicating the TSO User ID and the last the data type would probably still apply. So examples of the types of

datasets (libraries) a typical TSO User might have are:

<userid>.PROJECT1.COBOL - a library of source programs in COBOL

<userid>.PROJECT2.RPG - a library of source programs in RPG

<userid>.PROJECT3.PLI - a library of source programs in PL/I

<userid>.JCL.CNTL - a library Job Control Statements for batch jobs

<userid>.TEST.DATA - a library of test data

<userid>.CLIST - a library of the user's Command Lists

<userid>.PROJECT1.OBJLIB - a library of compiled programs

<userid>.LOADLIB - a library of executable programs

When you are creating datasets in your own Hercules/MVS3.8j environment, if you maintain an organizational

structure similar to this you will find that at times the final qualifier of the dataset will be used by TSO to

correctly determine the type of data contained in the dataset. Also, you should find this to be a very intuitive

means of organizing your datasets.

Editing Program Source Code and Job Control Language

Although I have described the basics of the EDIT command in the previous section, I would strongly

recommend using RPF to edit datasets. EDIT was designed in the days of line mode terminals and is just too

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 25/78

recommend using RPF to edit datasets. EDIT was designed in the days of line mode terminals and is just too

awkward to be very productive.

Foreground Compilation

Although the HELP system lists the foreground compiler commands - ASM, COBOL, FORT - these

commands are not included in the basic operating system. You can write your own Command Lists that will

implement the equivalent functionality and I believe some members of the Hercules' community have made

some effort in that area. There are also some of these programming language "command prompters" available

on the CBT Tape, but the versions there may require modifications to work with MVS 3.8j and the early

versions of the compilers we have available for use from MVT.

But, since these commands are not available in the basic system, I will not be discussing them and recommend

you use batch jobs to assemble, compile, and link your programs. The main focus of this section is allocating

the required datasets for testing and executing programs which are already compiled and link-edited. (For a

discussion of batch procedures available to assemble, compile, and link-edit programs, see Assembling,

Compiling, Link-Editing ...)

Foreground Execution of Programs

Almost any program can be executed in foreground, even if it was written to be executed in a batch

jobstream. The prerequisite to loading the program and beginning execution is that the datasets that are

expected by the program, which would normally be set up by the batch scheduler using parameters provided

by Job Control Language statements, are your responsibility. Most TSO Commands are in actuality nothing

more than specialized programs written in assembler. These programs, simply by virtue of the fact that they are

designed and written to be run in the TSO environment, allocate the datasets they require dynamically before

the program begins interacting with the user session. They also do the required cleanup before terminating,

which includes de-allocating datasets that were dynamically allocated by their code initially. The commands

you need to be familiar with that provides these functions are ALLOCATE, ATTRIB, and FREE.

Allocating Datasets - ALLOCATE Command

The ALLOCATE command (which may be abbreviated ALLOC) is used to perform two separate functions,

although there are times when both are performed simultaneously. Most frequently, the ALLOCate command

is used to perform the functions of the DD statement in Job Control Language. That is to provide the

parameters necessary for a program to open a dataset using the DD Name that was assigned in the Dataset

Control Block when the program was compiled/assembled. The ALLOCate command may also be used to

create a new, empty dataset, even though the user doesn't intend to execute a program immediately to utilize it.

Many years ago I taught classes to accountants and clerical type employees at my company who needed to

use TSO to execute programs through remote terminals that were sometimes located remotely from the data

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 26/78

use TSO to execute programs through remote terminals that were sometimes located remotely from the data

center and the programming staff. I found they easily grasped the concept of the ALLOCate command if I had

them visualize their terminal screen surrounded by hooks and then had them visualize that the ALLOCate

command was used to hang tags onto the hooks prior to executing their programs. The first, and most

important, tag was the DD Name, in order to allow the program to locate a particular file by name. The

second most important tag was the dataset name, which allowed the operating system to associated the

physical dataset with the file name. Of course, any other tags that were required could also be placed on the

hook for a particular DD Name - dataset organization, disposition, volume serial number, etc - in order to

provide the necessary attributes for the dataset. The syntax of the command is:

ALLOCate DSName(<dataset name to allocate>)

 [{ DDName(<dd name>) | File(<dd name>) }]

 [{ NEW | OLD | SHR | MOD }]

 [{ KEEP | DELETE | CATALOG | UNCATALOG }]

 [UNIT(<unit name>)]

 [VOLume(<volume serial number>)]

 [SPACE(<primary quntity> [<secondary quantity>]]

 [TRACKS | CYLINDERS]

 [DIR(<directory blocks>)]

 [USING(<attribute set name>)]

There are additional operands for the command, but these are the most frequently used for datasets other than

print/punch datasets that are to be handled by JES2. Not all operands are used every time, in fact some are

mutually exclusive, and in many situations only a very few operands are necessary to provide the required

information to execute a program. Remember, for an existing dataset, many of the Dataset Control Block

fields are populated from the dataset label, not from the JCL statement or ALLOCate command. So, to

allocate a catalogued dataset for input, it can be as simple as:

The complexity of the operands required for the ALLOCate command vary from the simple:

catalogued datasets used only as input

card image input read from the TSO User's terminal

print/punch output directed to the TSO User's terminal

print/punch output directed to JES2 for processing

dd names which are to be assigned NULL files (ie. DD DUMMY)

to the most complex, which would be creating a member in a new partitioned dataset that is to be allocated

when it is opened and catalogued when it is closed, with DCB attributes provided by the ALLOCate statement

rather than relying upon the program code to provide them.

Files which a program expect to read card image data provided by JES2 may easily be ALLOCated to

receive input from the TSO User's session:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 27/78

Likewise, files which are designed to produce card image or line printer output, utilize the same ALLOCate

syntax to direct the output of the program to the TSO User's screen:

A special operand is provided to ALLOCate a JES2 dataset to a DD Name - SYSOUT. When a JES2

dataset is allocated, records produced by the program are written to the JES2 spool, just as they would be if

the program was executed in batch. When the dataset is closed and the allocation is released, the data

becomes a print (or punch) job on the spool and its disposition is handled according to the JES2 parameters

supplied with the ALLOCate command and the Job Class as defined in JES2.

Instead of the usual operands required for a dataset, such as dataset name (DSName), SYSOUT(<class>) is

used to ALLOCate JES2 to the DD Name with the output spooled to the class specified. The optional

operands HOLD or NOHOLD may be included to modify the disposition of the print/punch output. The

default is NOHOLD. You may also include the optional operand DEST(<station id>) to specify a remote site

to which the output is to be routed.

A special operand - DUMMY - is provided to assign NULL files to DD Names:

When new datasets are being created more information is required, which requires more operands to be

specified. Some information must be supplied by a user attribute list, which is provided by the ATTRIB

command.

Providing Dataset Attribute Lists - ATTRIB Command

The ATTRIB command specifies a list of dataset attributes. The list is given a name by which it is subsequently

referred to in an ALLOCate command. The syntax of the command is:

ATTRIB <attribute list name>

 [LRECL(<logical record length>)]

 [BLKSIZE(<logical block size>)]

 [RECFM(<record format>)]

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 28/78

 [RECFM(<record format>)]

 [DSORG(<dataset organization>)]

 [INPUT | OUTPUT]

 [EXPDT(<expiration date>) | RETPD(<retention period>)]

Like the ALLOCate command, not all operands will be used for all datasets. The attributes you will most

frequently use are LRECL, BLKSIZE, RECFM, and DSORG. Once specified with an ATTRIB command,

an attribute list remains defined for the duration of the TSO session or until explicitly released with the FREE

command. Here is an example of an ATTRIB and ALLOCate command pair creating a new library:

The characteristics of the attribute list

logical record size of 80

block size of 3,120

record format fixed, blocked

dataset organization partitioned

are stored in the list name libattr. These are the commonly used attributes for source code libraries, so this

attribute list might be used to create, with the ALLOCate command, several library datasets without having to

reenter the attribute characteristics.

The ALLOCate command references the attribute list with the second operand - using(librattr). Since no

DDName parameter is specified for the ALLOCate command, the purpose of this ALLOCate command may

be assumed to be simply the creation of the new dataset. In fact, a DDName is automatically generated by

TSO for the ALLOCate command, and you can learn what the name is using the LISTALC command

described below.

Also note that in the ALLOCate command, the line continuation character (+) is used at the end of the first line

to indicate that the command continues on the next line following. This allows for the orderly entry of long

commands to make the more readable.

After you become familiar with the functions of the ALLOCate and ATTRIB commands, you might want to

investigate an alternative from the CBT tape: DDN.

Listing Allocated Datasets - LISTALC Command

The LISTALC command is used to list the datasets allocated to your TSO session. The syntax of the

command is:

LISTALC [STATUS] [HISTORY] [MEMBERS] [SYSNAMES]

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 29/78

LISTALC [STATUS] [HISTORY] [MEMBERS] [SYSNAMES]

If no operands are included, only the dataset names are listed for the datasets currently allocated:

The default information provides very few clues about the datasets, so adding STATUS (provides DD Name

and disposition), HISTORY (provides creation date, expiration date, and owner ID), and MEMBERS

(provides a list of member names for partitioned datasets) will provide much more useful information:

If you are planning on using TSO frequently, you might want to investigate the ALIST TSO command from the

CBT tape.

Releasing Allocated Datasets - FREE Command

The FREE command is used to dynamically release datasets allocated during the TSO session. All allocated

datasets are automatically released when a TSO session is terminated (via LOGOFF command or session time

out). However, there are several reasons you might want to release datasets before the end of the TSO

session:

a dataset allocated to the terminal session is required for exclusive access by a batch job and the batch

job will not proceed until the dataset is released

the disposition specified for a dataset allocated to a TSO session will not be processed until the dataset

is released - SYSOUT datasets will not be available for printing and CATALOG, UNCATALOG, or

DELETE disposition won't occur

you have used up all the control blocks available for allocation of datasets and need to free some up to

continue working

The syntax of the command is:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 30/78

FREE { File(<list of DD Names to be released>) |

 DAtaset(<list of dataset names to be released>) }

The datasets listed in the FREE command are dynamically released and the disposition specified when they

were allocated is processed.

There are times when you might want to free all allocated datasets. This may be accomplished with the

FREEALL TSO command from the CBT Tape.

Load and Execute Program - CALL Command

The CALL command is used to retrieve a load module (which has been processed by the Linkage Editor)

from a partitioned Dataset and transfers control the the first executable instruction in the load module. The load

module executes in the TSO session's address space. The syntax of the command is:

CALL <dsname>(<member>) ['<parameter values>']

The <dsname> operand specifies a partitioned dataset that contains executable load modules as members.

The <member> operand names the specific load module to be loaded/executed. If the TSO User ID has

created a library with the name <userid>.LOAD, the dataset name may be omitted and only the (<member>)

operand is required. If <member> is omitted, CALL attempts to load a member named TEMP�AME from

the library. The optional <parameter values> may be used to specify up to 100 characters of information that

is passed to the program as a parameter value.

An example executing a utility program in foreground:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 31/78

IEBGENER is typically executed with SYSIN as a NULL file. Since there is little useful information produced

by IEBGENER in the SYSPRINT dataset, in this example both SYSIN and SYSPRINT are ALLOCated to

NULL files. SYSUT1 is read as input by IEBGENER and is ALLOCated to a short member of

SYS1.MACLIB. SYSUT2, to which IEBGENER copies the contents of the dataset ALLOCated to

SYSUT1, is ALLOCated to the TSO terminal. When IEBGENER is loaded from SYS1.LINKLIB and

executed, the records read from the input DD Name - SYSUT1 - are written to the terminal screen.

An example of a more complex utility, showing SYSIN input read from the TSO terminal:

Obviously this program is designed to produce 132 column output, so the lines wrap when displayed at the

terminal, but executing such a program interactively can provide the information you need quickly and without

submitting the job to batch and, either examining the output on the spool (with the OUTPUT command,

QUEUE, or RPF) or printing the output to a Hercules' attached file and examining it there.

Debugging Programs - TEST Command

The TEST command (which may be abbreviated T) allows programs to be executed under precise control of

the user for the purpose of debugging. Under TEST:

breakpoints may be set at any instruction location; when a breakpoint is reached, execution is halted and

control is given to the terminal operator

initial values may be supplied to data areas in program storage before execution commences

register and data storage values may be displayed and altered

the program status word may be displayed

contents of control blocks (DEB, DCB, TCB, etc.) may be displayed and altered

execution of program instructions may proceed one instruction at a time or through program sections

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 32/78

execution of program instructions may proceed one instruction at a time or through program sections

under control of breakpoints

Obviously, the most successful use of the TEST command may be made if the program being executed was

written in assembler and the if user is familiar with object code debugging, MVS addressing, MVS control

blocks, and the structure of the program being executed. The TEST command allows more versatile

addressing of the program's structure if the program being executed under TEST has been assembled and link-

edited with the TEST option, which inserts specific information into the load module that is accessible to the

TEST command. The syntax of the command is:

Test <program name> ['parameters'] { LOAD | OBJECT }

<program name> specifies the dataset from where the program to be tested is to be loaded. The optional

'parameters' may specify a character string of up to 100 characters to be passed to the program. The

LOAD/OBJECT operand specifies whether the named program is either a load module (has been processed

by the linkage editor) or an object module (produced by the assembler or a compiler, but not link-edited).

After the program is loaded into the TEST environment, there are several subcommands that are available to

control the execution of the program and examine and/or change values in storage or control blocks. A few of

the more frequently used subcommands are:

ASSIGN <address> = <type> <value> place data values into storage locations

AT { <address> | (<address list>) } set breakpoint at address (or addresses)

GO [<address>] execute program (optionally from address)

LIST { <address> | (<address list>) }

 <type>

 [LENGTH(<length>)]

display contents of storage

OFF { <address> | (<address list>) } remove breakpoints at address (or

addresses)

There are more subcommands that a regular user of TEST might need to become familiar with, but I limit my

discussion here to the most basic functions.

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 33/78

In the session above, a program is loaded into TEST. The program is a short assembler load module that is

used to benchmark a simple routine. It is loaded from the <userid>.LOAD dataset; the member name is

DATETBIN; the member has been processed by the linkage editor - LOAD operand.

The LISTMAP subcommand displays key areas of the program's storage. The first location of the storage

area is 0A9EF0 - a LIST subcommand of that address with a TYPE designation I (instruction) shows that the

first instruction is an unconditional branch relative to Register 15. This matches what is expected from the

listing produced when the program was assembled and is a branch around identifying constants at the beginning

of the program.

In the session above, the address immediately following the relative branch instruction (0A9EF0 + 4 =

0A9EF4) is displayed with a TYPE designation C (character) for a length of 70 characters. This reveals that a

portion of the identifying constants are the CSECT name, a comment, and the date/time of assembly.

Continuing to examine the storage for the load module, using the first instruction address (which is the address

contained in Register 15 when the module is loaded by TEST) and the length from the relative branch

instruction at that address, the next instruction that will execute is located at address 0A9F84 (0A9EF0 + 94

[the 148 offset in the displayed instruction is shown in decimal] = 0A9F84). A LIST subcommand for that

address with a TYPE designation I (instructions) and a length of 48 shows the expected instructions

establishing standard linkage (the instructions at addresses 0A8F84 through 0A9FA6).

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 34/78

The routine being benchmarked by the program is executed a number of times in a loop controlled by a

counter maintained by Register 15. The last instruction in the loop is a BCT instruction at address 0A9FDC.

In the session above, a breakpoint is established at that address. When the GO subcommand is given, the

program runs until the breakpoint is reached, at which time the TEST prompt is displayed. A LIST

subcommand is used to display the contents of Register 15 - list 15r - and the value displayed is 0098967F,

or 9,999,999 in decimal, which is the initial value of the counter established by the loop. A second pair of GO

and LIST subcommands show that after one iteration of the loop code, the value of Register 15 has been

decremented by 1.

Multiple addresses may be displayed with a single LIST subcommand, as shown above, by including a list of

the addresses to be displayed in parentheses.

The LIST subcommand above shows a display of the target of the MVI instruction located at address

0A9FAC.

View and Manage Batch Job Facilities

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 35/78

View and Manage Batch Job Facilities

Although TSO provides a rich environment in which many tasks may be accomplished, there is still a necessity

to utilize batch jobstreams for some tasks. And TSO provides a set of commands specifically to enable the

TSO user to submit jobstreams to the batch environment, manage their progress, and retrieve and direct the

disposition of the output those jobstreams create.

Submitting Batch Jobs - SUBMIT Command

The SUBMIT command (which may be abbreviated SUB) is used to pass the contents of one or more

datasets, or members of partitioned datasets, to JES2 for background processing. The syntax of the command

is:

SUBmit { <dataset> | (<dataset list>) }

If a single dataset, or member, is to be submitted, the operand of the SUBmit command names the dataset.

Multiple datasets may be submitted with a single invocation of the command by providing a list of datasets,

enclosed by parentheses, as the operand. Note: Any dataset submitted may contain multiple batch jobs,

which are defined by the presence of a JOB control statement.

The life cycle of a batch job submitted from TSO is:

dataset containing Job Control Language statements is read by TSO and passed to JES2 by way of an

internal card reader

the card images are scanned and for each JOB card encountered, a JES2 job identifier is assigned to the

job; a message is written to the TSO user showing the job identifier assigned by JES2

the card images following the JOB card, which may be additional JCL statements and instream card

image data, are written to the JES2 queue as belonging to the job identified by the assigned job identifer

when an initiator becomes available, the JOB is selected for execution and processed by MVS

output from the job is placed on the JES2 output queue

Datasets containing Job Control Language statements may also be submitted from within other command

environments, for example: EDIT, RPF, and REVIEW.

Requesting Batch Job(s) Status - STATUS Command

The STATUS command (which may be abbreviated ST) may be used to request information about batch

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 36/78

The STATUS command (which may be abbreviated ST) may be used to request information about batch

jobstreams submitted by the TSO user. The format of the command is:

STatus { <jobname> | (<joblist>) }

The operand for the STATUS command should be either a single jobname or a list of jobnames separated by

spaces and enclosed in parentheses. If the STatus command is issued with no operands, TSO attempts to find

jobs whose name consists of the TSO User ID plus any one additional character (ie: <userid>A, <userid>B,

<userid>C, ... <userid>9)

If there are multiple jobs in the JES2 queues with names identical to a jobname included on the STATUS

command, the status display will contain all matching jobs. Notice in the session above there are duplicate jobs

with the names IDCAMS, UTIL02, and UTIL03. But all jobs have a unique job identifier assigned by JES2

(JOBnnnnn).

In the session above, the display shows that some of the matching jobs are awaiting execution (because they

are HELD), one job is on the output queue (has been processed by MVS and has output available for

viewing), and one jobname specified was not found in the system.

Viewing/Routing Output from Batch Jobs - OUTPUT Command

The OUTPUT command (which may be abbreviated OUT) may be used to:

retrieve output produced by a batch job and display it at the terminal

retrieve output produced by a batch job and place it in a dataset

change the class of output produced by a batch job to allow printing/punching by JES2

The format of the command is:

OUTput <jobname>[<job id>] [PRINT(* | <dataset>) | NEWCLASS(<class>)]

Some restrictions apply to which jobs are eligible to be processed by the OUTPUT command:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 37/78

1. the jobname must consist of your TSO User ID, optionally followed by additional characters

2. the output must have been written to JES2 output class X

The only required operand for the OUTPUT command is the jobname (and optional JES2 job id). If only the

jobname is provided as an operand to the OUTPUT command, the operand PRI�T(*) is assumed and the

output produced by the background job is retrieved from the JES2 queue and displayed at the TSO User's

terminal:

The drawback of using the OUTPUT command in this way is that once viewed at the terminal, the output is no

longer available on the JES2 queue to be viewed again or released for actual printing.

By specifying the PRINT operand with a dataset name as an argument, the background output is retrieved

from the JES2 queue and written to the indicated dataset where it may be viewed repeatedly and, using some

additional utility or TSO command, eventually be copied back to the JES2 queue for eventual disposition:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 38/78

The two overlayed sessions above show the output for a batch job - JAY01L(JOB00170) - retrieved by the

OUTPUT command to a sequential dataset - JAY01.JAY01L.OUTLIST - and the contents of the dataset

being browsed using the REVIEW TSO Command. Note that unless the specified dataset is fully qualified, the

OUTPUT command will prepend the TSO User's ID as the first qualifier and append 'OUTLIST' as the last

qualifier to the value supplied in the PRINT operand in order to generate the full dataset name used to store the

retrieved job output.

OUTPUT may also be used to change the class of the printed output so that it can be selected by a JES2

writer task for printing to a device attached to Hercules.

In my personal experience, there has almost always been some third party software available everywhere I

have worked that was easier to use and provided more functionality than the OUTPUT command. If you are

planning on viewing JES2 spooled output at your TSO session, I highly recommend that you investigate

installing the QUEUE command or RPF. The specific purpose of the QUEUE command is viewing data

contained in JES2 queues and RPF has a utility function that allows background job output to be viewed,

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 39/78

contained in JES2 queues and RPF has a utility function that allows background job output to be viewed,

deleted, and requeued for printing by JES2.

Cancelling Background Jobs - CA�CEL Command

The CANCEL command may be used to cancel background jobs, either while they are executing or in the

JES2 input queue. The format of the command is:

CANCEL <jobname>[<job id>] [PURGE]

The optional PURGE operand specifies that output produced by the job is to be deleted from the JES2 output

queue; the default is to place any output generated prior to the execution of the CANCEL command on the

JES2 output queue for processing as indicated by the JES2 parameters specified when the job was submitted

for execution.

If there are duplicate jobs with the same job name, the JES2 job ID may be used to qualify the target of the

CANCEL command, as shown in the session above. The cancel command with the PURGE option may also

be used to remove output from the JES2 queue:

Communication With Other Users and Operators

The SEND command (which may be abbreviated SE) is used to send text messages from a TSO User to one

or more other TSO Users or the MVS operator's console. The syntax of the command is:

SEnd '<text of message>'

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 40/78

SEnd '<text of message>'

 { USER(<userid list>) | CN(<console id>) }

 { NOW | LOGON | SAVE }

The <text of message> is any string of characters to be sent as a message to the designated recipient. The text

must be enclosed in apostrophes; if the message text contains an apostrophe, it must be entered as two

consecutive apostrophes.

The USER or CN operands designate the recipient of the message. USER (which may be abbreviated U)

may specify one or more TSO User IDs to which the message text is to be sent. Alternately, CN may be used

to specify the operator console ID to which the message text is to be sent. If neither USER or CN is specified

with the SEND command, the text will be displayed on the main operator's console - CN(00).

By default, the message is displayed at the recipients TSO session (or operator's console) as soon as ENTER

is pressed (the NOW operand, which is the default if none is specified). The LOGON operand may be used

to designate that the message is to be held for a TSO User that is not currently logged on and the message will

be displayed the next time they log onto TSO. If the LOGON operand is specified and the target User ID is

currently logged on, the message is delivered immediately, the same effect as if NOW had been specified.

SAVE may be used to designate that the message is not to be displayed at the recipient's terminal, even though

they are currently logged on, but saved until their next log on, at which time it will be displayed.

Command Lists

TSO provides the capability for executing sequences of stored basic commands. This eliminates the

redundancy of repeatedly entering sequences of commands that are frequently executed. Using this facility,

very sophisticated stored procedures may be created, used, and shared with others. A sequence of stored

TSO commands is referred to as a Command List (or CLIST). In addition to the usual TSO commands that

may be entered at the TSO READY prompt, a number of specialized commands that are available for use only

from within a CLIST may be utilized to modify the operation of these stored procedures. Variables may be

created and used to control the sequence and actions of the procedure. Specialized system variables and

functions to manipulate the contents of user variables are also available from within a CLIST.

CLIST statements assign values, set controls, select options, and control the conditions under which CLISTs

execute. Statements operate in both the command and subcommand environment, either by the EXEC

command or by the EXEC subcommand of EDIT. In general, statements fall into the categories of control,

assignment, conditional, and file access:

Control

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 41/78

Control

ATTN

CONTROL

DATA - ENDDATA

ERROR

EXIT

GLOBAL

GOTO

PROC

RETURN

TERMIN

WRITE / WRITENR

Assignment

READ

READDVAL

SET

Conditional

DO - WHILE - END

IF - THEN - ELSE

File Access

CLOSFILE

GETFILE

OPENFILE

PUTFILE

A Command List may be stored in either a sequential dataset or a member of a partitioned dataset. The

contents of a CLIST dataset are created/modified with any text editor and are not processed by a compilation

process; ie the lines of a CLIST are interpreted each time they are executed. Although the records in a

CLIST dataset may be variable length, most of the editors we are using in the Hercules' community are

restricted in some way when editing variable length datasets. Also, the dataset allocated during System

Generation to contain system CLISTs - SYS1.CMDPROC - is allocated to contain fixed length, 80 byte

records. Therefore, it would be my recommendation to allocate a partitioned dataset to contain the CLISTs

that you write using the characteristics: DSORG=PO, RECFM=FB, LRECL=80, BLKSIZE=3120, and

DSN=<your TSO ID>.CLIST. The following commands may be used to accomplish that task:

ATTRIB CATTR DSORG(PO) RECFM(F B) LRECL(80) BLKSIZE(3120)

ALLOC F(CLIST) USING(CATTR) +

 DA('<your TSO user id>.CLIST') +

 UNIT(SYSDA) VOL(<volume serial>) +

 SPACE(15 15) TRACKS DIR(20)

FREE F(CLIST)

substituting your TSO User ID and a valid DASD Volume Serial number in the appropriate places. Collecting

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 42/78

all of your CLISTs in a single partitioned dataset will keep them organized and will allow you to execute them

easily using only the member name.

It will probably be helpful if you think of Command Lists as a simple programming language. Before launching

into details of Command List structure and syntax of the additional commands available for use in CLISTs,

here is an example CLIST that implements the usual "Hello World" logic:

PROC 0 /* NO PARAMETERS REQUIRED */

WRITE HELLO WORLD! /* DISPLAY CONSTANT AT TERMINAL */

EXIT /* RETURN TO TSO READY PROMPT */

Executing Command Lists - EXEC Command

The TSO command used to invoke a Command List is EXEC (which may be abbreviated EX). The syntax of

the command is:

EXec <dataset name> [<parameters>] [LIST | NOLIST] [PROMPT | NOPROMPT]

The <dataset name> specifies the dataset or member that contains the stored Command List. If the CLIST is

a member of a partitioned dataset which is named '<your TSO User ID>'.CLIST, you can execute the

contents of the member by specifying the member name enclosed in parentheses (as shown in the session

above).

Two types of parameters may be supplied to the CLIST. Positional parameters, if used, must follow the

<dataset name> operand. Keyword parameters, if used, may be specified following the last positional

parameter. The use of the two types of parameters is explained in more detail below.

If the LIST operand is specified, TSO commands contained in the CLIST are displayed on the terminal before

they are executed.

If the PROMPT operand is specified, the operator is prompted to supply missing information for TSO

commands contained in the CLIST.

Implicit Execution of Command Lists

Because the name of a Command List is identical in format to the name of standard TSO commands, TSO will

first search its own command libraries for a command matching the name specified on the EXEC statement.

Since you know when you are executing a Command List, you can eliminate the time to perform this search by

using the implicit form of Command List execution:

%<Command List name> [<parameters>] [LIST | NOLIST] [PROMPT | NOPROMPT]

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 43/78

%<Command List name> [<parameters>] [LIST | NOLIST] [PROMPT | NOPROMPT]

Prior to using the implicit form, you must allocate the reserved DD Name SYSPROC to point to the

partitioned dataset containing your Command Lists:

ALLOC F(SYSPROC) DA(<your TSO User id>.CLIST)

As long as the allocation for SYSPROC is not freed, when the implicit form of EXEC is used, TSO will search

only the library allocated to the SYSPROC dataset for the specified member name:

Comments in Command Lists

For simple CLISTs, there may be no need to include any comments to document what the commands on a

particular line, or group of lines, is intended to accomplish. But for more complex CLISTs, you should

consider using comments as documentation for you, or someone else, if they later need to make modifications

to the CLIST or just to help understand how to use it.

Comments begin with a forward slash followed immediately by an asterisk (/*) and are terminated with an

asterisk followed immediately by a forward slash (*/). Comments may be continued on multiple lines by

following the same rules for continuation of regular TSO commands - terminate the line to be continued with

either a minus (-) or plus (+) sign and continue the comment on the next line of the CLIST.

Some examples of comments:

/* THIS ENTIRE LINE IS A COMMENT - THERE IS NO EXECUTABLE COMMAND */

CLS /* LINES WITH EXECUTABLE COMMANDS MAY INCLUDE SHORT COMMENTS */

/* VERY LONG COMMENTS MAY BE CONTINUED ACROSS MULTIPLE LINES BY +

 UTILIZING THE SAME CONTINUATION RULES ALLOWED FOR ANY OTHER +

 TSO COMMAND */

/* PROBABLY A BETTER WAY TO INCLUDE COMMENTS THAT SPAN MULTIPLE */

/* LINES WOULD BE TO MAKE EACH LINE A WHOLLY CONTAINED COMMENT */

Defining Variables with the Procedure Statement

A procedure statement defines parameters and relates them to symbolic variables used in the Command List

statements where the values passed through the parameters are to be substituted. The function of the keyword

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 44/78

statements where the values passed through the parameters are to be substituted. The function of the keyword

operands on the procedure statement in a CLIST is identical to the dummy variables contained on the PROC

statement in a procedure for Job Control Language. The syntax of the procedure statement is:

PROC <count> [<positional parameters>] [<keyword parameters>(<value>)]

<count> is the number of positional parameters that are coded following the <count> value. If there are no

positional parameters, <count> must be zero.

<positional parameters> are the names of variables that will receive values typed when the CLIST is executed,

without the ampersand (&).

<keyword parameters> are the names of variables that will be specified by key words, without the ampersand

(&). For each <keyword parameter> specified, <value> provides the default value to be given to the

parameter if none is specified when the CLIST is executed. Null values are coded as empty parentheses.

Some examples:

PROC 0 /* NO PARAMETERS REQUIRED OR EXPECTED */

PROC 1 CVALUE /* ONE VALUE MUST BE SUPPLIED AT EXEC */

PROC 1 MEMBER LIBRARY(SYS1.PROCLIB) /* MEMBER MUST BE SPECIFIED */

 /* LIBRARY MAY BE SPECIFIED, BUT */

 /* WILL BE GIVEN THE DEFAULT */

 /* VALUE 'SYS1.PROCLIB' IF NOT */

PROC 0 FROMLIB() TOLIB() /* NO POSITIONAL PARAMETERS, BUT TWO */

 /* OPTIONAL KEYWORD PARAMETERS WITH */

 /* NO DEFAULT VALUES SUPPLIED */

Variables in Command Lists

The real power of Command Lists is the ability to use symbolic variables when writing the operands for TSO

commands. When the CLIST is executed, the values contained in the variables are substituted for the symbolic

variable name wherever that name is coded in the statements coded in the CLIST.

The name for a variable used in a CLIST may consist of up to 31 characters, alphabetic or numbers, beginning

with a letter. When used in a command, the name of the variable is preceded by an ampersand (&), which

indicates to the interpreter that the value contained in the variable whose name follows the ampersand is to be

substituted for the variable name before the interpretation of the line continues. Here is a simple illustration of

variable substitution:

PROC 3 FRUIT VEGETABLE NUT COLOR(RED)

WRITE POSITIONAL VARIABLE 1 = &FRUIT

WRITE POSITIONAL VARIABLE 2 = &VEGETABLE

WRITE POSITIONAL VARIABLE 3 = &NUT

WRITE KEYWORD VARIABLE 1 = &COLOR

EXIT

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 45/78

At execution time, the values specified for the three positional variables are assigned to the variable names

included on the PROC statement as positional parameters - FRUIT, VEGETABLE, NUT. The value of the

keyword variable is assigned from the default value coded on the PROC statement. When the WRITE

statements are interpreted prior to execution, the values of each variable is substituted for the symbolic form of

the variable name coded in the CLIST line. Each time a CLIST is executed, different values may be specified

for each variable, including those designated as keyword variables:

Two special circumstances arise during variable substitution. The first involves the rules the interpreter follows

for concatenating the value of a variable with other characters, or another variable, in the CLIST line. As long

as the variable name is followed by a blank or special character, simply writing the variable name adjacent to

the following text is acceptable:

PROC 1 SERIAL UNIT(SYSDA)

WRITE // VOL=SER=&SERIAL,UNIT=&UNIT

EXIT

However, if the character following the variable name is also alphabetic or numeric, the interpreter will fail to

recognize the variable name correctly:

PROC 1 DDPREFIX

WRITE //&DDPREFIXSUMM DD DSN='PAY.DEPT.SUMMARY'

EXIT

An error message is issued because the interpreter doesn't recognize that what is intended is that the value

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 46/78

An error message is issued because the interpreter doesn't recognize that what is intended is that the value

contained in the symbolic variable &DDPREFIX is to be concatenated with the letters SUMM that are

following the variable name. The interpreter incorrectly tries to locate a variable named

&DDPREFIXSUMM that doesn't exist. This situation is resolved by using a period (.) as a delimiter

between symbolic variable names and the following text which is to be concatenated:

PROC 1 DDPREFIX

WRITE //&DDPREFIX.SUMM DD DSN='PAY.DEPT.SUMMARY'

EXIT

However, allowing the period for a delimiter causes an exception to the rule of only requiring the period as a

delimiter when the following character is alphabetic or numeric. Because the delimiting period is removed by

the interpreter, if the character following the delimiter is a period, in order to retain a period in the output after

interpretation, you must include a second period:

PROC 1 USER PROJECT(PAYROLL)

WRITE // DSN=&USER..&PROJECT..DEPT'

EXIT

The second circumstance that arises as a result of the rules governing symbolic variable interpretation is that

any place in a CLIST that you need to code an ampersand (&), such as the specification of a temporary

dataset name, you must code two consecutive ampersands:

PROC 1 SERIAL UNIT(SYSDA)

WRITE '//SORTWK3 DD DSN=&&&&SORTWK3,UNIT=&UNIT,VOL=SER=&SERIAL,'

EXIT

Controlling the Command List Environment - CO�TROL Statement

There are a number of settings/options that control how a Command List execute. These may be modified by

using the CONTROL statement. The syntax of the statement is:

CONTROL [FLUSH | NOFLUSH]

 [PROMPT | NOPROMPT]

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 47/78

 [PROMPT | NOPROMPT]

 [LIST | NOLIST]

 [CONLIST | NOCONLIST]

 [SYMLIST | NOSYMLIST]

 [MSG | NOMSG]

 [MAIN]

 [END(<string>)]

The settings specified by a CONTROL statement remain in effect for the duration of the CLIST, or until

another CONTROL statement is executed. You might have a control statement at the beginning of your

CLIST to provide the settings you wish to have in effect for the majority of your CLIST, but have additional

CONTROL statements before and after a particular segment of your CLIST to provide an alternate option to

be in effect for just that segment.

The FLUSH setting causes immediate termination of the CLIST if an error occurs. If NOFLUSH is set,

execution will continue after an error message is issued. This can allow some amount of post error processing

under the control of your CLIST.

The PROMPT setting causes the operator to be prompted to supply any required operands for TSO

commands if the operands are missing at the time of the command's interpretation.

The LIST setting causes TSO commands to be displayed before execution but after the substitution of

symbolic variables.

The CONLIST setting causes command procedure statements to be displayed before execution but after the

substitution of symbolic variables.

The SYMLIST setting causes TSO and command procedure statements to be displayed before any symbolic

substitution takes place.

The MSG setting causes messages generated by TSO command execution to be displayed.

The MAIN setting prevents the CLIST from being terminated in the case of an error or an attention

interruption. If MAIN is specified, NOFLUSH is also assumed.

The END operand allows an alternate character string to be specified as the terminator for a DO group.

Displaying Messages - WRITE Statement

You have seen the WRITE statement used in my examples above. The WRITE statement is used to display

output as the Command List is executed. The syntax of the statement is:

[<label>:] WRITE[NR] <text>

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST. Any

<text> following the command is displayed. The text displayed can be used for messages, information,

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 48/78

<text> following the command is displayed. The text displayed can be used for messages, information,

prompting, debugging, or whatever the writer of the command procedure desires.

If WRITE�R is specified, as opposed to WRITE, the cursor position for the next output will immediately

follow the last character of text displayed. When WRITE is specified, a carriage return/line feed are

automatically issued following the text displayed as a result of the WRITE statement.

Assigning Values to Variables - SET Statement

The SET statement is used to assign a value to a variable. The syntax of the statement is:

[<label>:] SET <variable name> { EQ | = } <expression>

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST. The

variable name need not have been defined already. The variable to be set cannot be a built-in function. It is

not necessary for the <variable name> to include an ampersand (&); the interpreter will recognize it as a

variable by its placement on the left side of the equal sign. The <expression> may consist of:

a null value: SET MYVAR =

a simple numeric value: SET COUNT = 1

a non-numeric value: SET DSN = MY.TEST.DATASET

the contents of another variable: SET OLDUNIT = &UNIT

a concatenated value: SET CVAR = &DSN1..&DSN2..DATA

a built-in function: SET DSNLEN = &LENGTH(&DSN)

an arithmetic result: SET RESULT = &COUNT + 1

The arithmetic operators that may be used in the SET statement are:

Operator Function

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

// Remainder

A CLIST illustrating these SET statements:

PROC 0 FRUIT(APPLE) UNIT(3350) DSN1(SYS1) DSN2(CONTROL)

SET FRUIT = /* NULL VALUE */

SET COUNT = 5 /* NUMERIC VALUE */

SET DSN = MY.TEST.DATASET /* NON-NUMERIC VALUE */

SET OLDUNIT = &UNIT /* VARIABLE VALUE */

SET CVAR = &DSN1..&DSN2..DATA /* CONCATENATED VALUE */

SET DSNLEN = &LENGTH(CVAR) /* BUILT-IN FUNCTION */

SET RESULT = &COUNT + 1 /* ARITHMETIC RESULT */

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 49/78

SET RESULT = &COUNT + 1 /* ARITHMETIC RESULT */

WRITE THE VALUE OF &&FRUIT IS: &FRUIT

WRITE THE VALUE OF COUNT IS: &COUNT

WRITE THE VALUE OF DSN IS: &DSN

WRITE THE VALUE OF OLDUNIT IS: &OLDUNIT

WRITE THE VALUE OF CVAR IS: &CVAR

WRITE THE VALUE OF DSNLEN IS: &DSNLEN

WRITE THE VALUE OF RESULT IS: &RESULT

EXIT

Built- In Functions

A set of built-in functions is provided to perform evaluations of data expressions, character strings, and

substrings. To use a built-in function, include the appropriate symbolic variable on a CLIST statement. The

interpreter will substitute data for the symbolic variable at execution time.

&DATATYPE(<expression>)

The &DATATYPE function is used to determine whether an expression is entirely numeric. The

interpreter will return the string �UM if the <expression> is all numeric or CHAR for anything

else.

&EVAL(<expression>)

The &EVAL function is used to find the result of an arithmetic expression. The interpreter will

return the value calculated as the numeric result of <expression>.

&LENGTH(<expression>)

The &LENGTH function is used to find the number of characters that <expression> occupy.

&STR(<string>)

The &STR function is used to suppress the evaluation of the <string> specified, however

symbolic substitution does take place.

&SUBSTR(<starting position>[:<ending position>],<string>)

The &SUBSTR function is used to select a segment from a character string. The <starting

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 50/78

The &SUBSTR function is used to select a segment from a character string. The <starting

position> specifies the first character to be selected from <string>. The <ending position>

specifies the last character to be selected. If omitted, <ending position> will default to the same

value as <starting position>, resulting in a single character selected from <string>.

A CLIST illustrating the Built-In functions:

PROC 0

SET NVAR1 = 471

SET CVAR1 = APPLE

SET DVAR1 = &STR(10/10/2004)

WRITE THE VALUE OF &&NVAR1 IS: &NVAR1, AND IS &DATATYPE(&NVAR1)

WRITE THE VALUE OF &&CVAR1 IS: &CVAR1, AND IS &DATATYPE(&CVAR1)

WRITE THE VALUE OF &&NVAR1 * 20 IS: &EVAL(&NVAR1 * 20)

WRITE THE LENGTH OF &&NVAR1 IS: &LENGTH(&NVAR1)

WRITE THE LENGTH OF &&CVAR1 IS: &LENGTH(&CVAR1)

WRITE THE RESULT OF &STR(5 ** 12) IS: &EVAL(5 ** 12)

WRITE GIVEN A DATE, &DVAR1, THE YEAR IS: &SUBSTR(7:10,&DVAR1)

EXIT

Control Variables

TSO maintains a set of variables whose values contain information about the current command procedure

environment and the TSO user. The values of four of the variables may be set by CLIST statements -

&LASTCC, &MAXCC, &SYSDVAL, and &SYSSCAN. Attempts to modify the other control variables

will produce an error.

&LASTCC

Use &LASTCC to examine the return code from the last operation, whether TSO

command/subcommand or statement. Values that may be returned by CLIST statements are:

16 Not enough virtual storage 836 (reserved)

300 User tried to update an unauthorized

variable

840 Not enough operands

304 Invalid keyword on EXIT statement 844 No valid operators

308 Code specified, but no code given on

EXIT statement

848 Attempt to load character from

numeric value

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 51/78

312 Internal GLOBAL processing error 852 Addition error - character data

316 TERMIN delimiter greater than 256

characters

856 Subtraction error - character data

324 GETLINE error 860 Multiplication error - character data

328 More than 640 delimiters on

TERMIN

864 Divide error - character data

332 Invalid file name syntax 868 Prefix found on character data

336 File already open 872 Numeric value too large

340 Invalid OPEN type syntax 900 Single ampersand found

344 Undefined OPEN type 904 Symbolic variable not found

348 File specified did not open (for

example, the filename was not

allocated)

908 Error occurred in an error action

range that received control because

of another error

352 GETFILE - filename not currently

open

912 Substring range invalid

356 GETFILE - the file has been closed

by the system (for example, file

opened under EDIT and EDIT has

ended)

916 Non-numeric value in substring range

360 PUTFILE - file name not currently

open

920 Substring range value too small (zero

or negative)

364 PUTFILE - file closed by system

(see code 356)

924 Invalid substring syntax

368 PUTFILE - CLOSFILE - file not

opened by OPENFILE

932 Substring outside of the range of the

string (for example, 1:3,AB - AB is

only two characters)

372 PTFILE - issued before GETFILE

on a file opened for update

936 A built-in function that requires a

value was entered without a value

400 GETFILE end of file (treated as an

error, which can be handled by

ERROR action)

940 Invalid symbolic variable

8xx Evaluation routine error codes 944 A label was used as a symbolic

variable

800 Data found where operator was

expected

948 Invalid label syntax on a GOTO

statement

804 Operator found where data was

expected

952 GOTO label was not defined

808 A comparison operator was used in a

SET statement

956 GOTO statement has no label

812 (reserved) 960 &SYSSCAN was set to an invalid

value

816 Operator found at the end of a 964 &LASTCC was set to an invalid

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 52/78

816 Operator found at the end of a

statement

964 &LASTCC was set to an invalid

value and EXIT tried to use it as a

default value820 Operators out of order 999 Internal command procedure error

824 More than one exclusive operator

found

SxxxA system ABEND code

828 More than one exclusive comparison

operator

UxxxA user ABEND code

&MAXCC

Use &MAXCC to examine the highest return code issued up to now in this CLIST, or passed

back from any nested procedures executed.

&SYSDATE

Use &SYSDATE to get the present date in the format mm/dd/yy.

&SYSDLM

Use &SYSDLM to identify which delimiter string of those specified by the TERMIN statement

the user entered to give up control. This allows a user to select options that a CLIST may

provide.

&SYSDVAL

Use &SYSDVAL for one of three purposes:

When TERMIN passes control to the terminal user, get the value of any parameters the

user enters besides the delimiter string entered to pass control back to the CLIST.

When READ requests specific terminal input, get the value of the user response line.

Parse records read from datasets into fields

&SYSICMD

Use &SYSICMD to get the name by which the user implicitly invoked the currently executing

CLIST. The name value will be null if the user invoked this CLIST explicitly.

&SYSNEST

User &SYSNEST to get character strings YES or NO, signifying whether the currently executing

CLIST is nested (invoked from another CLIST instead of from the terminal directly).

&SYSPCMD

Use &SYSPCMD to get the name of the most recently executed TSO command in this CLIST.

The initial value is "EXEC" in the command environment and "EDIT" in the subcommand

environment.

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 53/78

&SYSPREF

Use &SYSPREF to get the dataset name prefix specified in the user profile table of the CLIST

user.

&SYSPROC

Use &SYSPROC to get the logon procedure name for the current CLIST user.

&SYSSCAN

Use &SYSSCAN to get the maximum value for the number of times that symbolic substitution is

allowed to rescan a line to resolve symbolic variables. The default value is 16; minimum value is

0; maximum value is the largest fixed-point number.

&SYSSCMD

Use &SYSSCMD to get the name of the subcommand currently executing. The iniital value is

null if EXEC is issued in the command environment and "EXEC" if EXEC is issued in the

subcommand environment (under EDIT). The value is null whenever the procedure is in the

command environment.

&SYSTIME

Use &SYSTIME to get the present time in the format hh:mm:ss.

&SYSUID

Use &SYSUID to get the TSO User ID of the individual currently executing the CLIST.

A CLIST illustrating some of the Control variables:

PROC 0

WRITE THE CURRENT DATE (&&SYSDATE) IS &SYSDATE

WRITE THE CURRENT TIME (&&SYSTIME) IS &SYSTIME

WRITE THE CURRENT USER (&&SYSUID) IS &SYSUID

WRITE THE DATASET PREFIX (&&SYSPREF) IS &SYSPREF

WRITE THE VALUE OF &&SYSICMD IS &SYSICMD

WRITE THE VALUE OF &&SYSNEST IS &SYSNEST

WRITE THE VALUE OF &&SYSPCMD IS &SYSPCMD

WRITE THE VALUE OF &&SYSPROC IS &SYSPROC

WRITE THE VALUE OF &&SYSSCAN IS &SYSSCAN

EXIT

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 54/78

Controlling Executing Sequence

The sequence in which statements are executed in a Command List may be influenced by a couple of

statements. The natural sequence of execution is to begin with the first statement contained in the CLIST and

proceed one by one with each consecutive statement until the end of the CLIST is reached or an EXIT

statement is encountered, terminating execution.

The value of variables may be examined using the IF statement and, based upon the outcome of the condition

tested, a GOTO statement may be used to transfer control from the current statement in the CLIST to any

other statement that contains a label. Current programming practice tends to frown upon this type of

branching, but it is still a valid means of controlling execution sequence in a Command List and there are

circumstances in which that is the only method available to implement the desired solution.

The use of a GOTO statement without a corresponding condition test made with an IF statement results in a

unconditional branch.

A more structured approach to constructing execution loops is provided by a DO-WHILE-END sequence.

It is also possible to conditionally execute individual commands using the WHEN statement.

Evaluating Variable Values - IF-THE�-ELSE Statements

The IF-THEN-ELSE structure is used to test the contents of variables during execution and is similar to

equivalent statements in most high level languages. The comparative expression in an IF statement allows the

comparison of any combination of literal values and symbolic variables. The syntax of the statements is:

[<label>:] IF <expression> THEN <statement>

ELSE <statement>

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST. The

<expression> is of the format:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 55/78

<expression> is of the format:

{ literal | symbolic variable } <comparison operator> { literal | symbolic variable }

The comparison operators which are valid are:

Comparison Performed Symbol Characters

Equal = EQ

Not Equal ¬= NE

Less Than < LT

Greater Than > GT

Less Than or Equal <= LE

Greater Than or Equal >= GE

Not Greater Than ¬> NG

Not Less Than ¬< NL

Complex comparisons may be constructed by joining simple comparisons with logical operators:

Connection Symbol Characters

And && AND

Or || OR

An example CLIST showing some simple IF-THEN statements:

PROC 4 V1 V2 V3 V4

IF &V1 GT &V2 THEN WRITE &&V1 (&V1) GREATER THAN &&V2 (&V2)

ELSE WRITE &&V1 (&V1) NOT GREATER THAN &&V2 (&V2)

IF &V2 EQ &V3 THEN WRITE &&V2 (&V2) IS EQUAL TO &&V3 (&V3)

ELSE WRITE &&V2 (&V2) IS NOT EQUAL TO &&V3 (&V3)

IF &V3 LE &V1 THEN WRITE &&V3 (&V3) IS <= &&V1 (&V1)

ELSE WRITE &&V3 (&V3) IS NOT <= &&V1 (&V1)

IF &V4 LT &V1 THEN WRITE &&V4 (&V4) IS < &&V1 (&V1)

ELSE WRITE &&V4 (&V4) IS NOT < &&V1 (&V1)

EXIT

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 56/78

Some coding rules that must be followed when writing the IF-THEN-ELSE structure are:

The word THEN must appear on the same logical line as the word IF. Of course, the logical line may

consist of several physical lines that have been continued using the plus (+) or minus (-) continuation

characters.

You may code only one statement to be executed if the expression is true - following the word THEN -

and it must also be contained on the same logical line as the word IF.

Likewise, you may code only one statement to be executed if the express is false, and it must be coded

on the same logical like as the word ELSE. Again, continuation characters may be used to mediate this

limitation.

Of course, it is most likely that you would need to execute more than one statement if the condition were true -

THEN - or false - ELSE - in which case you can enclose multiple statements with a DO-END pair:

PROC 2 V1 V2

IF &DATATYPE(&V1) = NUM && &DATATYPE(&V2) = NUM THEN DO

 SET RESULT = &EVAL(&V1 * &V2)

 WRITE V1 * V2 = &RESULT

 END

ELSE DO

 WRITE V1 AND V2 MUST BE NUMERIC

 WRITE THE DATA TYPE OF V1 IS &DATATYPE(&V1)

 WRITE THE DATA TYPE OF V2 IS &DATATYPE(&V2)

 END

EXIT

It is also possible to nest IF-THEN-ELSE structures:

PROC 3 V1 V2 OPERATION

IF &DATATYPE(&V1) = NUM && &DATATYPE(&V2) = NUM THEN DO

 SET OP =

 IF &OPERATION EQ ADD THEN SET OP = &STR(+)

 ELSE /* NO ACTION ON ELSE */

 IF &OPERATION EQ SUBTRACT THEN SET OP = &STR(-)

 ELSE /* NO ACTION ON ELSE */

 IF &OPERATION EQ MULTIPLY THEN SET OP = &STR(*)

 ELSE /* NO ACTION ON ELSE */

 IF &OPERATION EQ DIVIDE THEN SET OP = &STR(/)

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 57/78

 IF &OPERATION EQ DIVIDE THEN SET OP = &STR(/)

 ELSE /* NO ACTION ON ELSE */

 IF &LENGTH(&STR(&OP)) = 1 THEN +

 WRITE THE RESULT OF &V1 &OP &V2 = &EVAL(&V1 &OP &V2)

 ELSE WRITE THE OPERATION SPECIFIED IS NOT RECOGNIZED

 END

ELSE DO

 WRITE V1 AND V2 MUST BE NUMERIC

 WRITE THE DATA TYPE OF V1 IS &DATATYPE(&V1)

 WRITE THE DATA TYPE OF V2 IS &DATATYPE(&V2)

 END

EXIT

Unconditional Branching - GOTO Statement

The GOTO statement unconditional transfers control from the currently executing statement to the statement

containing the label specified as an operand on the GOTO statement. The syntax of the statement is:

[<label>:] GOTO <target label>

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST.

There should almost always be a way to design your CLIST so that you can avoid the use of the GOTO

statement, since creating procedures containing unconditional branch instructions are frequently prone to logic

errors which are difficult to locate and resolve. Nevertheless, the statement is sometimes the only way to

implement the desired logic. Here is another implementation of the prior CLIST using GOTOs:

PROC 3 V1 V2 OPERATION

IF &DATATYPE(&V1) = NUM && +

 &DATATYPE(&V2) = NUM THEN GOTO CONT1

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 58/78

 &DATATYPE(&V2) = NUM THEN GOTO CONT1

ELSE DO

 WRITE V1 AND V2 MUST BE NUMERIC

 WRITE THE DATA TYPE OF V1 IS &DATATYPE(&V1)

 WRITE THE DATA TYPE OF V2 IS &DATATYPE(&V2)

 GOTO ERRORS

 END

CONT1: IF &OPERATION EQ ADD THEN GOTO CADD

IF &OPERATION EQ SUBTRACT THEN GOTO CSUB

IF &OPERATION EQ MULTIPLY THEN GOTO CMUL

IF &OPERATION EQ DIVIDE THEN GOTO CDIV

WRITE THE OPERATION SPECIFIED IS NOT RECOGNIZED

ERRORS: WRITE ERRORS WERE ENCOUNTERED

GOTO CEXIT:

CADD: SET OP = &STR(+)

GOTO CEVAL:

CSUB: SET OP = &STR(-)

GOTO CEVAL:

CMUL: SET OP = &STR(*)

GOTO CEVAL:

CDIV: SET OP = &STR(*)

CEVAL: WRITE THE RESULT OF &V1 &OP &V2 IS &EVAL(&V1 &OP &V2)

CEXIT: EXIT

It should be obvious that it is much harder to follow the logic with GOTOs.

Controlled Repetitive Loops - DO-WHILE-E�D Statements

The DO-WHILE-END structure provides the means to construct repetitive loops in a Command List in a

clear, easy to understand manner. The syntax of the statements is:

[<label>:] DO WHILE <expression>

 <one or more statements>

[<label>:] END

If present, the <label> allows either the DO or END statements to be the target of a branch from another part

of the CLIST.

The statements enclosed by the DO and END statements are executed repeatedly as long as the <expression>

coded on the WHILE statement is true. The <expression> may use logical operators to evaluate complex

comparisons, in the same manner as the IF statement.

A simple example of a DO-WHILE-END loop:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 59/78

A simple example of a DO-WHILE-END loop:

PROC 0

SET &COUNT = 0

DO WHILE &COUNT < 12

 SET &COUNT = &COUNT + 1

 WRITE THE VALUE OF &&COUNT IS &COUNT

END

EXIT

Terminating the Command List - EXIT Statement

In order to terminate (stop executing) your Command List, you use the EXIT statement. The syntax of the

EXIT statement is:

[<label>:] EXIT [CODE(<numeric literal> | <numeric variable>)]

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST.

If you just code EXIT, the CLIST simply returns control to the TSO monitor. If the CODE operand is

included, the numeric value specified either with a literal or a variable, is stored in the control variable

&LASTCC, where it can be examined by statements in another CLIST.

EXIT statements may appear more than once in a single Command List. In actual practice, you will probably

have a single common exit point to which control flows if the CLIST terminates normally. Then you might have

additional exit points that are reached when error conditions are detected by your coded statements.

Sequential File Input/Output

The file access statements allow records to be written to and read from sequential datasets. The operations

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 60/78

The file access statements allow records to be written to and read from sequential datasets. The operations

are restricted to sequential datasets (QSAM access). In order to process a sequential dataset you must:

use an ALLOCATE command to assign a file name to the dataset

use an OPENFILE statement to prepare the dataset for input/output

use one or more PUTFILE or GETFILE statements to write records to or read records from the

dataset

use a CLOSFILE statement to close the dataset

use a FREE command to release the allocation

You should specify a CONTROL statement with the NOFLUSH operand for all CLISTs that use file

input/output. If you don't and an error causes a CLIST to be terminated while files remain open, you may have

to log off to recover.

OPE�FILE Statement

Before you can issue read or write statements to a file, you must use OPENFILE to prepare the file for

access. The syntax of the statement is:

[<label>:] OPENFILE <filename> { INPUT | OUTPUT | UPDATE }

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST.

The <filename> operand refers to a file name which must have been ALLOCated prior to issuing the

OPENFILE statement. A dataset which is opened for UPDATE may be the target of both PUTFILE and

GETFILE statements. If a dataset already contains records and you wish to add more records to it or update

the existing records, you must code a disposition of MOD on the ALLOCate statement.

PUTFILE Statement

The PUTFILE statement is used to write a single record to a dataset. The syntax of the statement is:

[<label>:] PUTFILE <filename>

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST.

The <filename> operand refers to a dataset which must have been opened prior to the execution of the

PUTFILE statement. PUTFILE transfers a single record to the dataset from the file variable &<filename>.

The record must be initialized each time by a SET statement unless you want the same record written more

than one time. If the dataset is opened in UPDATE mode, a PUTFILE statement overwrites the record read

by the previous GETFILE statement. Therefore, to update the 20th record in an existing dataset, you must first

issue 19 GETFILE statements to read past the records preceding the 20th record, which is the one to be

updated.

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 61/78

GETFILE Statement

The GETFILE statement is used to read a single record from a dataset. The syntax of the statement is:

[<label>:] GETFILE <filename>

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST.

The <filename> operand refers to a dataset which must have been opened prior to the execution of the

GETFILE statement. GETFILE transfers a single record from the dataset into the file variable &<filename>.

After reading a record, the &SUBSTR built-in function may be used to extract individual fields from the file

variable.

CLOSFILE Statement

When you are finished reading or writing records to a dataset, you should close it using the CLOSFILE

statement. The syntax of the statement is:

[<label>:] CLOSFILE <filename>

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST.

The <filename> operand refers to a dataset which has been previously opened with an OPENFILE statement.

In addition, you may want to code a FREE command to release the file ALLOCation.

An example CLIST using OPENFILE, PUTFILE, GETFILE, CLOSFILE:

PROC 0

/* ALLOCATE FILE (ALREADY EXISTS, CATALOGED) */

ALLOC F(TMPF) DA(SEQDATA) OLD

/* OPEN FILE FOR OUTPUT */

OPENFILE TMPF OUTPUT

/* WRITE SOME RECORDS TO FILE */

SET &TMPF = &STR(1ST DATA RECORD &SYSUID &SYSDATE &SYSTIME)

PUTFILE TMPF

SET &TMPF = &STR(2ND DATA RECORD &SYSUID &SYSDATE &SYSTIME)

PUTFILE TMPF

SET &TMPF = &STR(3RD DATA RECORD &SYSUID &SYSDATE &SYSTIME)

PUTFILE TMPF

SET &TMPF = &STR(4TH DATA RECORD &SYSUID &SYSDATE &SYSTIME)

PUTFILE TMPF

/* CLOSE FILE */

CLOSFILE TMPF

/* OPEN FILE FOR INPUT */

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 62/78

/* OPEN FILE FOR INPUT */

OPENFILE TMPF INPUT

/* READ RECORDS FROM FILE AND DISPLAY */

GETFILE TMPF

WRITE &TMPF

GETFILE TMPF

WRITE &TMPF

GETFILE TMPF

WRITE &TMPF

GETFILE TMPF

WRITE &TMPF

/* CLOSE FILE */

CLOSFILE TMPF

/* FREE FILE */

FREE F(TMPF)

EXIT

Extracting Fields from Records - READDVAL Statement

The READDVAL statement is used to parse the contents of the &SYSDVAL control variable into separate

variables. The syntax of the statement is:

[<label>:] READDVAL <variable1> [<variable2> <variable3> ... <variablen>]

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST.

The contents of the &SYSDVAL variable are broken into separate fields delimited by standard TSO

delimiters - spaces or commas. If there are more fields in &SYSDVAL than variables are provided, the

extraneous fields are ignored. If there are more variables than field available in &SYSDVAL, the extra

variables are assigned null values.

In order to use READDVAL/&SYSDVAL to parse the contents of records, the file name used to allocate,

open, and read the dataset must be SYSDVAL.

An example CLIST using READDVAL to read the records created by the previous CLIST example:

PROC 0

/* ALLOCATE FILE (CREATE IN PRIOR EXAMPLE) */

ALLOC F(SYSDVAL) DA(SEQDATA) OLD

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 63/78

ALLOC F(SYSDVAL) DA(SEQDATA) OLD

/* OPEN FILE FOR INPUT */

OPENFILE SYSDVAL INPUT

/* READ RECORDS FROM FILE AND DISPLAY */

GETFILE SYSDVAL

READDVAL FIELD1 FIELD2 FIELD3 FUSER FDATE FTIME

WRITE BY &FUSER @ &FDATE &FTIME: &FIELD1 &FIELD2 &FIELD3

READDVAL FIELD1 FIELD2 FIELD3 FUSER FDATE FTIME

WRITE BY &FUSER @ &FDATE &FTIME: &FIELD1 &FIELD2 &FIELD3

READDVAL FIELD1 FIELD2 FIELD3 FUSER FDATE FTIME

WRITE BY &FUSER @ &FDATE &FTIME: &FIELD1 &FIELD2 &FIELD3

READDVAL FIELD1 FIELD2 FIELD3 FUSER FDATE FTIME

WRITE BY &FUSER @ &FDATE &FTIME: &FIELD1 &FIELD2 &FIELD3

/* CLOSE FILE */

CLOSFILE SYSDVAL

/* FREE FILE */

FREE F(SYSDVAL)

EXIT

Accepting Data from the TSO User - READ Statement

The READ statement accepts one or more strings from the TSO user and assigns them to symbolic variables.

The syntax of the statement is:

[<label>:] READ <variable1> [<variable2> <variable3> ... <variablen>]

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST.

 If more than one string is entered by the operator, the strings must be separated by commas. If a string

contains embedded blanks or special characters, the string should be enclosed in apostrophes. If the user

enter more values than the number of variables coded on the READ statement, the extraneous values are

ignored. If the user enters less values than the number of variables coded on the READ statement, the

unmatched variables will be assigned null values. The user can selectively omit values by entering consecutive

commas with no intervening value:

15,carrots,,1.50,,10

It is generally a good practice to precede READ statements with either WRITE or WRITENR statements

identifying to the user what data is to be typed in response when the READ statement is executed.

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 64/78

identifying to the user what data is to be typed in response when the READ statement is executed.

Here is an example CLIST using READ to obtain values for depreciation calculation:

PROC 0 /* COMPUTE DOUBLE DECLINING BALANCE DEPRECIATION */

/* READ VALUES FOR ASSET */

WRITENR TYPE ASSET NAME, ORIGINAL VALUE, LIFE IN YEARS:

READ ASSET VALUE LIFE

/* DISPLAY DEPRECIATION REPORT */

WRITE

WRITE ASSET: &ASSET

WRITE ORIGINAL VALUE: $&VALUE

WRITE ASSET LIFE: &LIFE YEARS

WRITE DEPRECIATION BOOK VALUE

SET CYEAR = 1

DO WHILE &VALUE > 0

 IF &CYEAR = &LIFE THEN DO

 SET &DEPR = &VALUE

 SET &VALUE = 0

 END

 ELSE DO

 SET &DEPR = (2 * &VALUE) / &LIFE

 SET &VALUE = &VALUE - &DEPR

END

 WRITE END OF YEAR &CYEAR &DEPR &VALUE

 SET &CYEAR = &CYEAR + 1

END /* END DO LOOP */

EXIT

Embedding TSO Command Groups in CLISTs - DATA/E�DDATA Statements

In order to include TSO commands in a Command List where the subcommands of the embedded TSO

command could be interpreted by the CLIST as command statements, the DATA/ENDATA statements are

required. The syntax of the statements is:

[<label>:] DATA

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 65/78

[<label>:] DATA

 ENDDATA

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST.

All commands and subcommands included within the DATA/ENDDATA block are regarded as data by the

CLIST interpreter, but will be seen as commands/subcommands by the system. Symbolic substitution is

performed on the lines with the block before execution.

 An example CLIST:

PROC 1 SERIAL

EDIT (VTOCLIST) CNTL

DATA

C * =VTOCLIST=&SYSUID.VL=

F =SYSUT1=

C * =$$$$$$=&SERIAL=

SUBMIT

END NOSAVE

ENDDATA

EXIT

The CLIST invokes EDIT to tailor a generic jobstream. The purpose of the jobstream is to execute the

VTOCLIST program. The EDIT subcommands contained inside the DATA/ENDDATA block perform the

following functions:

change the job name on the first record from VTOCLIST to the TSO User ID plus the characters VL

locate the DD statement for SYSUT1

change the marker for VOL=SER - $$$$$$ - to the serial number typed as an argument for the CLIST

submits the modified jobstream for background execution

ends the EDIT session without saving the modified member

The DATA/ENDDATA block may be used to supply subcommands to any TSO command.

Temporarily Suspend CLIST Execution - TERMI� Statement

The TERMIN statement returns control of the session to the TSO User in order to allow the user to input any

TSO commands or subcommands and then resume execution of the CLIST at the statement following the

TERMIN statement. The syntax of the statement is:

[<label>:] TERMIN [<string1> <string2> ... <stringn>]

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 66/78

[<label>:] TERMIN [<string1> <string2> ... <stringn>]

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST.

One or more optional character strings may be specified on the TERMIN statement. When the user enters a

character string matching one of these strings, control is returned to the CLIST at the statement following the

TERMIN statement. The control variable &SYSDLM contains a numeric value that corresponds to the

ordinal position of the character string as it was coded on the TERMIN statement. Allowing multiple strings to

resume the CLIST provides the capability for the TSO user to specify alternative execution options upon return

of control to the CLIST. If no strings are to be specified on the TERMIN statement, the word TERMIN must

be followed by a comma in place of the first string.

It is generally a good practice to precede TERMIN statements with WRITE statements identifying to the user

what string(s) may be used to resume the execution of the CLIST.

PROC 0

WRITE ENTER ALLOCATE COMMAND FOR SEQUENTIAL DATASET TO DISPLAY.

WRITE FILE NAME MUST BE 'SYSUT1'.

WRITE ENTER 'GO' TO PROCEED OR 'ABORT' TO TERMINATE.

TERMIN GO ABORT

IF &SYSDLM EQ 2 THEN EXIT

ALLOC F(SYSUT2) DA(*)

ALLOC F(SYSPRINT) DUMMY

ALLOC F(SYSIN) DUMMY

CALL 'SYS1.LINKLIB(IEBGENER)'

FREE F(SYSIN SYSPRINT SYSUT1 SYSUT2)

EXIT

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 67/78

�ested Command Lists

It is possible for one Command List to invoke a second Command List. When this occurs the CLISTs are

said to be nested. The first CLIST is regarded as the outer procedure and the second CLIST is regarded as

the inner procedure. When the second CLIST terminates, either because the last statement is executed or an

EXIT statement is processed, control returns to the first CLIST and execution continues with the next

statement in that procedure following the statement that invoked the second CLIST. CLISTs may be nested to

many levels - the first CLIST is invoked by the TSO user, it calls a second CLIST, the second CLIST calls a

third CLIST, etc. In actual practice, you should limit nesting to two or three levels. If you find that you need to

nest calls more than three levels, you probably should investigate using a higher level language to satisfy your

application.

Control Options

When control passes from an outer CLIST to an inner CLIST, environment options set by any CONTROL

statements are inherited by the inner CLIST. The inner CLIST may alter these options by issuing a

CONTROL statement of its own. When control is returned to the outer CLIST, the options are restored to

the settings they held when the inner CLIST was invoked.

Passing Variables

The values contained in variables in the outer CLIST may be passed to the inner CLIST in two ways, through

parameters when the inner CLIST is EXECuted or through the use of the GLOBAL statement. The syntax of

the statement is:

[<label>:] GLOBAL <variable1> [<variable2> <variable3> ... <variablen>]

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST.

The GLOBAL statement is coded in both the outer and inner CLISTs. The values contained in the variables

are passed by the ordinal position in the GLOBAL statements. Therefore, the names used for the variables in

the inner CLIST do not have to be identical to the names used in the outer CLIST. The GLOBAL statement

in the inner CLIST may list fewer variables than the GLOBAL statement in the outer CLIST; the unmatched

variables will not be available to the inner CLIST. The GLOBAL statement in the inner CLIST may not list

more variables than the GLOBAL statement in the outer CLIST. All variables listed in a GLOBAL statement

must be defined before they are included on a GLOBAL statement. It is probably a good programming

practice to minimize the use of GLOBAL variables in CLISTs, just as the use of global variables is discouraged

in current programming methodology.

PROC 0 /* OUTER NESTED CLIST */

SET VAR1 = APPLE

SET VAR2 = 256

GLOBAL VAR1

WRITE (OUTER) THE VALUE OF &&VAR1 IS &VAR1

WRITE (OUTER) THE VALUE OF &&VAR2 IS &VAR2

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 68/78

WRITE (OUTER) THE VALUE OF &&VAR2 IS &VAR2

WRITE CALLING SECONDARY CLIST

%GLOBIN &VAR2

WRITE (OUTER) THE VALUE OF &&VAR1 IS &VAR1

WRITE (OUTER) THE VALUE OF &&VAR2 IS &VAR2

EXIT

PROC 1 PASSEDVAR /* INNER NESTED CLIST */

GLOBAL GLOBALVAR

WRITE (INNER) THE ORIGINAL VALUE OF GLOBAL VARIABLE IS &GLOBALVAR

WRITE (INNER) THE ORIGINAL VALUE OF PASSED VARIABLE IS &PASSEDVAR

SET GLOBALVAR = PEACH

SET PASSEDVAR = 512

WRITE (INNER) THE NEW VALUE OF GLOBAL VARIABLE IS &GLOBALVAR

WRITE (INNER) THE NEW VALUE OF PASSED VARIABLE IS &PASSEDVAR

EXIT

As you see in the example of parameter passing between the two nested procedures above, when a variable is

passed between procedures using the GLOBAL statement, the inner CLISTs is given access to the same copy

of the variable. If the value of the variable is changed in the inner CLIST, the original value of the variable is

lost. When a variable is passed between CLISTs as a parameter (included on the PROC statement of the

called CLIST and the value passed from a symbolic variable when the inner CLIST is invoked), a copy of the

value of the variable named in the outer CLIST is passed to the symbolic name used in the inner CLIST.

Regardless of the changes to the passed value made by the inner CLIST, the original value of the symbolic

variable remains intact.

Restricting Use of �ested Procedures

There may be times when you have designed a CLIST to be executed as a nested procedure and you wish to

prevent a TSO user from explicitly invoking the CLIST from the TSO Ready prompt. You may accomplish

this by using the &SYSNEST control variable:

IF &SYSNEST = NO THEN DO

 WRITE YOU CANNOT INVOKE THIS PROCEDURE BY ITSELF

 EXIT

 END

A simple calculator illustrates the use of two levels of nested CLISTs:

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 69/78

PROC 0 /* MAIN CLIST: CALC */

WRITE SIMPLE CALCULATOR

SET AGAIN = Y

DO WHILE &AGAIN = Y

 WRITENR TYPE VARIABLE, {ADD, SUBTRACT, MULTIPLY, DIVIDE}, VARIABLE:

 READ V1, OP, V2

 IF &SUBSTR(1,&OP) = A THEN DO

 %ADD V1(&V1) V2(&V2)

 GOTO CONTINUE:

 END

 IF &SUBSTR(1,&OP) = S THEN DO

 %SUB V1(&V1) V2(&V2)

 GOTO CONTINUE:

 END

 IF &SUBSTR(1,&OP) = M THEN DO

 %MUL V1(&V1) V2(&V2)

 GOTO CONTINUE:

 END

 IF &SUBSTR(1,&OP) = D THEN DO

 %DIV V1(&V1) V2(&V2)

 GOTO CONTINUE:

 END

 WRITENR OPERATOR ENTERED (&OP) IS NOT RECOGNIZED.

CONTINUE: WRITENR ANOTHER CALCULATION? (Y/N):

 READ AGAIN

END /* END DO WHILE */

EXIT

PROC 0 V1(0) V2(0) /* SECOND LEVEL CLIST: ADD */

IF &SYSNEST EQ NO THEN DO

 WRITE YOU CANNOT INVOKE THIS PROCEDURE DIRECTLY

 EXIT

 END

WRITE &V1 + &V2 = &EVAL(&V1 + &V2)

EXIT

Note: The statements contained in the three other second level CLISTs - SUB, MUL, and DIV are not shown

above.

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 70/78

Coding Exit Routines

An exit routine is a block of statements coded as a DO group that is executed either when an error occurs or

when an attention key is pressed by the TSO user. The handling and coding of both types of routines is similar.

ERROR Statement

The ERROR statement is used to set up an environment that checks for non-zero return codes from

commands, subcommands, and CLIST statements in teh currently executing procedure. Detection of an error

invokes a specified action, which can be an error exit routine. The syntax of the statement is:

[<label>:] ERROR { OFF | <statements> }

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST.

If OFF is coded, any previously established ERROR routine is deleted. If a block of statements is coded, the

statements become the current routine to invoke in the event an error occurs.

Note: A CONTROL statement with either MAIN or NOFLUSH must be in effect for a CLIST in which an

ERROR routine is coded.

Normally when a TSO command or CLIST statement generates an error condition, the CLIST is terminated.

Establishing an ERROR exit allows you to anticipate errors and, in some cases, recover from them while

allowing the CLIST to continue execution.

ATT� Statement

The ATTN statement is used to set up an environment that detects attention interruptions processed by the

TSO monitor program. The syntax of the statement is:

[<label>:] ATTN { OFF | <statements> }

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST.

If OFF is coded, any previously established ATTN routine is deleted. If a block of statements is coded, the

statements become the current routine to invoke in the event an attention interruption occurs.

RETUR� Statement

The RETURN statement is used to return control following an error condition or an attention routine to the

statement immediately following the one that caused the error condition to occur or the statement that was

executing when the attention key was pressed. The syntax of the statement is:

[<label>:] RETURN

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 71/78

[<label>:] RETURN

If present, the <label> allows the statement to be the target of a branch from another part of the CLIST.

RETURN is valid only when issued from an activated error routine or an activated attention routine from the

current CLIST. If neither condition exists, the RETURN becomes a no-operation.

An example of an ERROR exit:

PROC 0

CONTROL NOFLUSH

RESTART: WRITENR TYPE HIGH LEVEL QUALIFIER:

READ QUAL

ERROR DO

 IF &LASTCC = 4 THEN DO

 WRITE QUALIFIER ENTERED NOT FOUND. RESTARTING.

 GOTO RESTART

 END

 ELSE EXIT(&MAXCC)

 END

LISTCAT LVL(&QUAL.)

EXIT

TSO User Administration - ACCOU�T Command

The ACCOUNT command is used to perform maintenance on the dataset that controls access to the TSO

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 72/78

The ACCOUNT command is used to perform maintenance on the dataset that controls access to the TSO

system. The command invokes a conversational program that allows authorized TSO Users to perform the

administrative functions of changing, deleting, adding, and listing entries in the user attribute dataset. The

ACCOUNT command has no operands, since its function is to initiate a conversational process through which

subcommands are used to complete tasks. Prior to entering the ACCOUNT command, the user attribute

dataset and broadcast message dataset should both be allocated:

ALLOC F(SYSUADS) DA('SYS1.UADS')

ALLOC F(SYSLBC) DA('SYS1.BRODCAST')

ACCOUNT

SY�C Subcommand

It is recommended that SYNC be issued as the first subcommand after ACCOUNT is started. It is only

necessary to issue the SYNC subcommand once per invocation of ACCOUNT. The SYNC subcommand

ensures the correct formatting is present in the broadcast dataset and synchronizes the TSO User IDs between

the two datasets.

ADD Subcommand

The ADD subcommand is used to add a new TSO User ID. The syntax of the subcommand is:

ADD (<userid> { <password> | * } {<accounting information> | * } <logon procedure>)

 { MAXSIZE(<maximum region size>) | NOLIM }

 { OPER | NOOPER }

 { ACCT | NOACCT }

 { JCL | NOJCL }

 { MOUNT | NOMOUNT }

 USERDATA(<string>)

 { PERFORM(<performance group>) | NOPERFORM }

 SIZE(<default region size>)

 UNIT(<default DASD unit>)

 DEST(<routing destination>)

For additional help on the operands of the ADD command, you can enter HELP ADD.

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 73/78

LIST Subcommand

The LIST subcommand is used to list the settings for one or more TSO User IDs. The syntax of the

subcommand is:

LIST (<user id> | *)

Specifying asterisk (*) for the operand will list all User IDs.

DELETE Subcommand

The DELETE subcommand is used to delete a User ID. The syntax of the command is:

DELETE (<user id>)

CHA�GE Subcommand

The CHANGE subcommand may be used to change some attributes of a User ID, however in my experience

it is usually easier to simply delete the existing User ID and add it back with the desired settings.

E�D Subcommand

The ACCOUNT conversational process is terminated by the END subcommand.

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 74/78

MVS Console Operator Functions - OPER Command

The OPER command is used to enter a subset of the MVS console operator commands that are usually

entered at the main or alternate system console. The command invokes a conversational program that allows

authorized TSO Users to perform some of the functions usually carried out by the MVS system operator. The

OPER command has no operands, since its function is to initiate a conversational process through which

subcommands are used to complete tasks. The basic syntax of the subcommands is:

<subcommand> <operand1>,<operand2>,...<operandn>

Blanks are the only acceptable separator character between the <subcommand> and the operands. A comma

is the only acceptable separator character between the operands. Details for selected subcommands is

included below.

CA�CEL Subcommand

The CANCEL subcommand (which may be abbreviated C) is used to cancel TSO User sessions. The syntax

of the subcommand is:

Cancel U=<userid>[,DUMP]

If the optional DUMP operand is specified, a storage dump is produced of the address space allocated for the

TSO User session.

DISPLAY Subcommand

The DISPLAY subcommand (which may be abbreviated D) is used to display information about regions, TSO

User sessions, jobs, and SLIP traps. The syntax of the subcommand is:

Display { T | TS[,List] | R[,List] | Jobs[,List] | SLIP[,=<id>] }

The information displayed for each available operand is:

T - displays the time and date

TS - displays the number of TSO users logged on; if LIST (may be abbreviated L) is also specified a list

of TSO User IDs is also displayed

R - displays message IDs of outstanding console operator requests; if LIST (may be abbreviated L) is

also specified a list of the message text is also displayed

JOBS (may be abbreviated J) - displays the number of batch jobs and initiators currently active; if LIST

(may be abbreviated L) is also specified a list of jobs (with step name and other attributes) is also

displayed

SLIP - displays a summary of all SLIP traps set; if <id> is also specified a detailed display of the trap

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 75/78

SLIP - displays a summary of all SLIP traps set; if <id> is also specified a detailed display of the trap

identified is also displayed

Monitor Subcommand

The MONITOR subcommand (which may be abbreviated MN) is used to request notification at your terminal

when batch jobs or TSO sessions begin and end, or the disposition of datasets when they are de-allocated.

The syntax of the subcommand is:

MoNitor { JOBNAMES[,T] | SESS[,T] | STATUS }

The information displayed for each available operand is:

JOBNAMES - requests that a message be displayed at your terminal when each batch job begins

execution and ends execution; if T is also specified the system time is included in the message

SESS - requests that a message be displayed at your terminal when each TSO User session is started

and terminated; if T is also specified the system time is included in the message

STATUS - requests that a message be displayed at your terminal showing dataset names and volume

serial numbers with KEEP, CATLG, or UNCATLG disposition at step and job termination

The notification messages will only be displayed as long as the OPER command remains active.

STOPM� Subcommand

The STOPMN subcommand (which may be abbreviated PM) is used to terminate the display of messages

initiated by the MONITOR subcommand. The syntax of the subcommand is:

stoPMn { JOBNAMES | SESS | STATUS }

E�D Subcommand

The OPER conversational process is terminated by the END subcommand.

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 76/78

TSO Tutorial Index

3270 Display System GLOBAL statement

ACCOUNT command GOTO statement

ALLOCATE command Help command

ATTN statement IF-THEN-ELSE statements

ATTRIB command LISTALC command

Attention Keys LISTCAT command

Built-In Functions LISTDS command

CALL command LOGOFF command

CANCEL command LOGON command

CLOSFILE statement Managing Datasets and Catalogs

CONTROL statement Nested Command Lists

Command Lists OPENFILE statement

Command Syntax OPER command

Communicating with Other Users OUTPUT command

Control variables PROC statement

Creating and Modifying Data PUTFILE statement

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 77/78

Creating and Modifying Data PUTFILE statement

DATA-ENDDATA statements READ statement

DELETE command READDVAL statement

DO-WHILE-END statements RENAME command

Deleting a Dataset RETURN statement

Develop, Test, and Execute Programs Renaming a Dataset

Displaying Catalog Information SET statement

Displaying Dataset Attributes STATUS command

EDIT command SUBMIT command

ERROR statement Submitting Batch Jobs

EXEC command TERMIN statement

EXIT statement TEST command

FREE command User Profile (PROFILE command)

Foreground Program Execution
View and Manage Batch Job

Facilities

GETFILE statement WRITE statement

I hope that you have found my instructions useful. If you have questions that I can answer to help expand upon

the information I have included here, please don't hesitate to send them to me:

Back to Previous Page Return to Site Home Page

This page was last updated on September 06, 2006.

6/3/2011 TSO Tutorial

jaymoseley.com/hercules/…/tsotutor.htm 78/78

